scholarly journals On a Differential Inclusion Involving Dirichlet–Laplace Operators of Fractional Orders

2020 ◽  
Vol 43 (6) ◽  
pp. 4089-4106
Author(s):  
Rafał Kamocki

Abstract In this paper, we investigate a nonlinear differential inclusion with Dirichlet boundary conditions containing a weak Laplace operator of fractional orders (defined via the spectral decomposition of the Laplace operator $$-{\varDelta }$$ - Δ under Dirichlet boundary conditions). Using variational methods, we characterize solutions of such a problem. Our approach is based on tools from convex analysis (properties of a Legendre–Fenchel transform).

Author(s):  
Pedro R. S. Antunes ◽  
Pedro Freitas

We consider the inverse spectral problem for the Laplace operator on triangles with Dirichlet boundary conditions, providing numerical evidence to the effect that the eigenvalue triplet ( λ 1 , λ 2 , λ 3 ) is sufficient to determine a triangle uniquely. On the other hand, we show that other combinations such as ( λ 1 , λ 2 , λ 4 ) will not be enough, and that there will exist at least two triangles with the same values on these triplets.


Author(s):  
Vincenzo Amato ◽  
Andrea Gentile ◽  
Alba Lia Masiello

AbstractIn the last decades, comparison results of Talenti type for Elliptic Problems with Dirichlet boundary conditions have been widely investigated. In this paper, we generalize the results obtained in Alvino et al. (Commun Pure Appl Math, to appear) to the case of p-Laplace operator with Robin boundary conditions. The point-wise comparison, obtained in Alvino et al. (to appear) only in the planar case, holds true in any dimension if p is sufficiently small.


2021 ◽  
Vol 5 (4) ◽  
pp. 156
Author(s):  
Nagamanickam Nagajothi ◽  
Vadivel Sadhasivam ◽  
Omar Bazighifan ◽  
Rami Ahmad El-Nabulsi

In this paper, we investigate the existence results for nonlinear fractional q-difference equations with two different fractional orders supplemented with the Dirichlet boundary conditions. Our main existence results are obtained by applying the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also discussed.


Author(s):  
Rodrigo Clemente ◽  
João Marcos do Ó ◽  
Pedro Ubilla

Abstract We discuss the existence, nonexistence and multiplicity of solutions for a class of elliptic equations in the unit ball with zero Dirichlet boundary conditions involving nonlinearities with supercritical growth. By using Pohozaev type identity we prove a nonexistence result for a class of supercritical problems with variable exponent which allow us to complement the analysis developed in (Calc. Var. (2016) 55:83). Moreover, we establish existence results of positive solutions for semilinear elliptic equations involving nonlinearities which are subcritical at infinity just in a part of the domain, and can be supercritical in a suitable sense.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuhua Long ◽  
Shaohong Wang ◽  
Jiali Chen

Abstract In the present paper, a class of fourth-order nonlinear difference equations with Dirichlet boundary conditions or periodic boundary conditions are considered. Based on the invariant sets of descending flow in combination with the mountain pass lemma, we establish a series of sufficient conditions on the existence of multiple solutions for these boundary value problems. In addition, some examples are provided to demonstrate the applicability of our results.


Sign in / Sign up

Export Citation Format

Share Document