scholarly journals Separation and Rare Events

Author(s):  
Liam F. Beiser-McGrath

Abstract When separation is a problem in binary dependent variable models, many researchers use Firth's penalized maximum likelihood in order to obtain finite estimates (Firth, 1993; Zorn, 2005; Rainey, 2016). In this paper, I show that this approach can lead to inferences in the opposite direction of the separation when the number of observations are sufficiently large and both the dependent and independent variables are rare events. As large datasets with rare events are frequently used in political science, such as dyadic data measuring interstate relations, a lack of awareness of this problem may lead to inferential issues. Simulations and an empirical illustration show that the use of independent “weakly-informative” prior distributions centered at zero, for example, the Cauchy prior suggested by Gelman et al. (2008), can avoid this issue. More generally, the results caution researchers to be aware of how the choice of prior interacts with the structure of their data, when estimating models in the presence of separation.

2018 ◽  
Vol 8 (1) ◽  
pp. 92-105 ◽  
Author(s):  
Scott J. Cook ◽  
Jude C. Hays ◽  
Robert J. Franzese

AbstractMost agree that models of binary time-series-cross-sectional data in political science often possess unobserved unit-level heterogeneity. Despite this, there is no clear consensus on how best to account for these potential unit effects, with many of the issues confronted seemingly misunderstood. For example, one oft-discussed concern with rare events data is the elimination of no-event units from the sample when estimating fixed effects models. Many argue that this is a reason to eschew fixed effects in favor of pooled or random effects models. We revisit this issue and clarify that the main concern with fixed effects models of rare events data is not inaccurate or inefficient coefficient estimation, but instead biased marginal effects. In short, only evaluating event-experiencing units gives an inaccurate estimate of the baseline risk, yielding inaccurate (often inflated) estimates of predictor effects. As a solution, we propose a penalized maximum likelihood fixed effects (PML-FE) estimator, which retains the complete sample by providing finite estimates of the fixed effects for each unit. We explore the small sample performance of PML-FE versus common alternatives via Monte Carlo simulations, evaluating the accuracy of both parameter and effects estimates. Finally, we illustrate our method with a model of civil war onset.


AIChE Journal ◽  
2014 ◽  
Vol 60 (3) ◽  
pp. 1013-1026 ◽  
Author(s):  
Taha Mohseni Ahooyi ◽  
Masoud Soroush ◽  
Jeffrey E. Arbogast ◽  
Warren D. Seider ◽  
Ulku G. Oktem

Sign in / Sign up

Export Citation Format

Share Document