Lithic technological responses to environmental change during the penultimate glacial cycle (MIS 7–6) at the Yangshang site, western Chinese Loess Plateau

2021 ◽  
pp. 1-12
Author(s):  
Yuchao Zhao ◽  
Jing Zhou ◽  
Fuyou Chen ◽  
Xiaomin Wang ◽  
Junyi Ge ◽  
...  

Abstract A multidisciplinary fieldwork and research project was recently begun at the Yangshang site (220–140 ka), a late Early Paleolithic locale in the western Chinese Loess Plateau. 1696 lithic artifacts and 337 faunal remains were recovered during the excavation. Sedimentological and paleoenvironmental investigations indicate the site preserves a relatively long and minimally disturbed archaeological sequence associated with paleoenvironmental changes during MIS 7–6. A detailed techno-typological analysis of Yangshang's lithic assemblages was undertaken to examine the influence of glacial cycles on late Middle Pleistocene hominin technological strategies in the western Chinese Loess Plateau. The results show that while the Yangshang site is dominated by quartz-based core/flake assemblages typical of most Early Paleolithic sites in North China, the lithic assemblages provide evidence that different provisioning systems existed during the penultimate glaciation. We argue that these shifts reflect changes in land use and mobility that were tied to climate change. Our results suggest that theoretically informed statistical analyses of so-called unchanging and crude lithic technology can yield meaningful evidence for behavioral shifts.

2003 ◽  
Vol 60 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Nathaniel W. Rutter ◽  
Dean Rokosh ◽  
Michael E. Evans ◽  
Edward C. Little ◽  
Jiri Chlachula ◽  
...  

AbstractLoess-paleosol sequences of the last interglacial-glacial cycle are correlated from European Russia to central Siberia and the Chinese Loess Plateau. During cold periods represented by marine oxygen isotope stages (OIS) 2 and 4, loess deposition dominated in the Russian Plain and the Loess Plateau. In central Siberia, loess deposition took place also, but five to seven thin, weakly developed paleosols are identified in both stages. OIS 3, in the Chinese Loess Plateau near Yangchang, consists of a loess bed that is flanked by two weakly developed paleosols. At Kurtak, Siberia, OIS 3 is represented by two distinct, stacked paleosols with no loess bed separating the paleosols. In the Russian Plain, OIS 3 consists of a single, possibly welded paleosol, representing upper and lower stage-3 climates. Brunisols and Chernozems dominate the profiles in China and Siberia, whereas Regosols, Luvisols, and Chernozems are evident in the northern and southern Russian Plain, respectively. OIS 5 is represented in China and the Russian Plain by pedo complexes in a series of welded soils, whereas in contrast, the Kurtak site consists of six paleosols with interbedded loess. The paleosols consist largely of Brunisols and Chernozems. Although the three areas examined have different climates, geographical settings, and loess source areas, they all had similar climate changes during the last interglacial-glacial cycle.


2014 ◽  
Vol 81 (3) ◽  
pp. 433-444 ◽  
Author(s):  
Yougui Song ◽  
Xiaomin Fang ◽  
John W. King ◽  
Jijun Li ◽  
Ishikawa Naoto ◽  
...  

AbstractA high-resolution rock magnetic investigation was performed on the Chaona Quaternary loess/paleosol sequences in the Central Chinese Loess Plateau. Based on a newly developed independent unturned time scale and magnetic records, we reconstructed the history of the East Asia monsoons during the last 3 Ma and explored the middle Pleistocene climate transition (MPT). Rock magnetic results show that the loess layers are characterized by relatively high coercivity and remanent coercivity, lower magnetic susceptibility (MS), and that the paleosol layers are characterized by relatively high MS, saturation magnetization and remanent saturation magnetization. Spectrum analyses indicate that there are various periods in addition to orbital periodicities. According to the onset and stable appearance of 100 kyr period, we consider that the MPT recorded in this section began at ~ 1.26 Ma and was completed by ~ 0.53 Ma, which differs from previous investigations based on orbitally tuned time scales. The forcing mechanism for the MPT was more complicated than just the orbital forcing. We conclude that the rapid uplift of the Tibetan Plateau may have played an important role in the shift of periodicities during the middle Pleistocene.


2011 ◽  
Vol 8 (3) ◽  
pp. 4459-4492
Author(s):  
X. Wang ◽  
Z. L. Ding

Abstract. The spatio-temporal changes in trace gas emissions and burnt biomass by paleofires in Chinese Loess Plateau over the last two glacial cycles have been reconstructed using vegetation (C3/C4) specific fire emission factors and black carbon records in three loess-paleosol sections. Results show that the average mass emission rate (AMER) of total trace gases (TTG) and burnt biomass by fires (BBF) in glacial periods are 1~2 times higher than in interglacial periods, and they display a clear southward decrease during both glacial and interglacial periods. This pattern reflects the combined control on paleofire emissions by climate-induced fire regimes and succession of vegetation types. The substantial increases in TTG-AMER and BBF during the late Holocene relative to the middle-to-early Holocene at Lingtai and Weinan support existing conclusion that increased anthropogenic fire activities have occurred in Middle and Southern Plateau during late Holocene. To assess the influence of paleofires on soil carbon stocks, the ratios of BBF to above-ground net primary productivity (ANPP), estimated by magnetic susceptibility-based paleorainfall and paleotemperature reconstruction, were calculated. In the Northern Plateau, the BBF/ANPP ratios during glacial periods are nearly 90%, about 2~3 times higher than during interglacial periods, suggesting paleofires may be the overwhelming force modulating the cycling of terrestrial organic carbon in the region. However, in Middle and Southern Plateau, the large decrease in BBF/ANPP ratios to around 20% and 10% respectively during glacial and interglacial periods suggests that paleofires have had a minor impact on carbon storage in these areas during both glacial and interglacial periods.


2015 ◽  
Vol 84 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Cheng-Bang An ◽  
Weimiao Dong ◽  
Yufeng Chen ◽  
Hu Li ◽  
Chao Shi ◽  
...  

Stable isotopic analysis of carbon and nitrogen in human and faunal remains has been widely used to reconstruct prehistoric diets and environmental changes. Isotopic analysis of plant remains allows for a more extensive consideration of paleodiets and can potentially provide information about the environment in which the crops were grown. This paper reports the results of δ13C and δ15N analyses performed on modern and charred archaeological foxtail millet samples collected from the western part of the Chinese Loess Plateau. The δ13C mean value of modern samples is lower than that of ancient samples. There is a significant difference between grain and leaf δ15N values. These results challenge the standard assumption in isotope studies that the nitrogen isotope signals of the different part of plants consumed by humans and animals are the same. The 3–5‰ difference between human and animal δ15N values is always regarded as an indicator of whether human diets contained considerable animal protein. The difference between grain and leaf δ15N values makes this assumption problematic in a foxtail millet-dominated society.


Sign in / Sign up

Export Citation Format

Share Document