scholarly journals Large deviation probabilities for the number of vertices of random polytopes in the ball

2006 ◽  
Vol 38 (01) ◽  
pp. 47-58 ◽  
Author(s):  
Pierre Calka ◽  
Tomasz Schreiber

In this paper we establish large deviation results on the number of extreme points of a homogeneous Poisson point process in the unit ball of R d . In particular, we deduce an almost-sure law of large numbers in any dimension. As an auxiliary result we prove strong localization of the extreme points in an annulus near the boundary of the ball.

2006 ◽  
Vol 38 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Pierre Calka ◽  
Tomasz Schreiber

In this paper we establish large deviation results on the number of extreme points of a homogeneous Poisson point process in the unit ball of Rd. In particular, we deduce an almost-sure law of large numbers in any dimension. As an auxiliary result we prove strong localization of the extreme points in an annulus near the boundary of the ball.


2018 ◽  
Vol 17 (01) ◽  
pp. 117-143
Author(s):  
Nian Yao ◽  
Mingqing Xiao

In this paper, we consider a generalized stochastic model associated with affine point processes based on several classical models. In particular, we study the asymptotic behavior of the process when the initial intensity is large, i.e. the intensity of arriving events observed initially is considerably larger, which appears in many real applications. For our generalized model, we establish (i) the large deviation principle; (ii) the corresponding functional law of large numbers; (iii) the corresponding central limit theorem, that reflect the fundamentals of the process asymptotic behavior. Our obtained results include existing results as special cases with a more general structure.


1982 ◽  
Vol 14 (04) ◽  
pp. 732-751
Author(s):  
H.-J. Schuh

Let be a supercritical Bellman-Harris process with finite offspring mean. Cohn [17] has shown that there always exist constants Ct such that lim t→∞ Zt /Ct = W almost surely for some non-degenerate random variable W. In this paper we give an alternative proof, based on the study of (Zt ) as a point process. Our methods are to some extent analytical and parallel Seneta's [18] and Heyde's [11] approaches in the case of the Galton–Watson process. We further identify Ct as 1/(–log Ft (–1)(γ)), where Ft (γ) = E(γ z t), i.e. the norming constants found by Seneta [18] for the Galton–Watson process, apply also to the Bellman-Harris process. Finally we derive a weak law of large numbers for W, prove that W is continuous on (0,∞) and show that W has [0,∞) as its support.


2010 ◽  
Vol 47 (04) ◽  
pp. 908-922 ◽  
Author(s):  
Yiqing Chen ◽  
Anyue Chen ◽  
Kai W. Ng

A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.


2014 ◽  
Vol 23 (6) ◽  
pp. 973-1009 ◽  
Author(s):  
FRANCIS COMETS ◽  
FRANÇOIS DELARUE ◽  
RENÉ SCHOTT

We model the transmission of a message on the complete graph with n vertices and limited resources. The vertices of the graph represent servers that may broadcast the message at random. Each server has a random emission capital that decreases at each emission. Quantities of interest are the number of servers that receive the information before the capital of all the informed servers is exhausted and the exhaustion time. We establish limit theorems (law of large numbers, central limit theorem and large deviation principle), as n → ∞, for the proportion of informed vertices before exhaustion and for the total duration. The analysis relies on a construction of the transmission procedure as a dynamical selection of successful nodes in a Galton–Watson tree with respect to the success epochs of the coupon collector problem.


1988 ◽  
Vol 25 (1) ◽  
pp. 106-119 ◽  
Author(s):  
Richard Arratia ◽  
Pricilla Morris ◽  
Michael S. Waterman

A derivation of a law of large numbers for the highest-scoring matching subsequence is given. Let Xk, Yk be i.i.d. q=(q(i))i∊S letters from a finite alphabet S and v=(v(i))i∊S be a sequence of non-negative real numbers assigned to the letters of S. Using a scoring system similar to that of the game Scrabble, the score of a word w=i1 · ·· im is defined to be V(w)=v(i1) + · ·· + v(im). Let Vn denote the value of the highest-scoring matching contiguous subsequence between X1X2 · ·· Xn and Y1Y2· ·· Yn. In this paper, we show that Vn/K log(n) → 1 a.s. where K ≡ K(q,v). The method employed here involves ‘stuttering’ the letters to construct a Markov chain and applying previous results for the length of the longest matching subsequence. An explicit form for β ∊Pr(S), where β (i) denotes the proportion of letter i found in the highest-scoring word, is given. A similar treatment for Markov chains is also included.Implicit in these results is a large-deviation result for the additive functional, H ≡ Σn < τv(Xn), for a Markov chain stopped at the hitting time τ of some state. We give this large deviation result explicitly, for Markov chains in discrete time and in continuous time.


Author(s):  
NADINE GUILLOTIN-PLANTARD ◽  
RENÉ SCHOTT

Quantum Bernoulli random walks can be realized as random walks on the dual of SU(2). We use this realization in order to study a model of dynamic quantum Bernoulli random walk with time-dependent transitions. For the corresponding dynamic random walk on the dual of SU(2), we prove several limit theorems (local limit theorem, central limit theorem, law of large numbers, large deviation principle). In addition, we characterize a large class of transient dynamic random walks.


Sign in / Sign up

Export Citation Format

Share Document