Renewal theory in two dimensions: bounds on the renewal function

1977 ◽  
Vol 9 (03) ◽  
pp. 527-541 ◽  
Author(s):  
Jeffrey J. Hunter

In two earlier papers [6], [7] the properties of bivariate renewal processes and their associated two-dimensional renewal functions, H(x, y) were examined. By utilising the Fréchet bounds for joint distributions and the properties of univariate renewal processes, a collection of upper and lower bounds for H(x, y) are constructed. The evaluation of these bounds is carried out for the case of the family of bivariate Poisson processes. An interesting by-product of this investigation leads to a new inequality for the median of a Poisson random variable.

1977 ◽  
Vol 9 (3) ◽  
pp. 527-541 ◽  
Author(s):  
Jeffrey J. Hunter

In two earlier papers [6], [7] the properties of bivariate renewal processes and their associated two-dimensional renewal functions, H(x, y) were examined. By utilising the Fréchet bounds for joint distributions and the properties of univariate renewal processes, a collection of upper and lower bounds for H(x, y) are constructed. The evaluation of these bounds is carried out for the case of the family of bivariate Poisson processes. An interesting by-product of this investigation leads to a new inequality for the median of a Poisson random variable.


1974 ◽  
Vol 6 (3) ◽  
pp. 546-562 ◽  
Author(s):  
Jeffrey J. Hunter

In an earlier paper (Renewal theory in two dimensions: Basic results) the author developed a unified theory for the study of bivariate renewal processes. In contrast to this aforementioned work where explicit expressions were obtained, we develop some asymptotic results concerning the joint distribution of the bivariate renewal counting process (Nx(1), Ny(2)), the distribution of the two-dimensional renewal counting process Nx,y and the two-dimensional renewal function &Nx,y. A by-product of the investigation is the study of the distribution and moments of the minimum of two correlated normal random variables. A comprehensive bibliography on multi-dimensional renewal theory is also appended.


1974 ◽  
Vol 6 (02) ◽  
pp. 376-391 ◽  
Author(s):  
Jeffrey J. Hunter

In this paper a unified theory for studying renewal processes in two dimensions is developed. Bivariate generating functions and bivariate Laplace transforms are the basic tools used in generalizing the standard theory of univariate renewal processes. An example involving a bivariate exponential distribution is presented. This is used to illustrate the general theory and explicit expressions for the two-dimensional renewal density, the two-dimensional renewal function, the correlation between the marginal univariate renewal counting processes, and other related quantities are derived.


1974 ◽  
Vol 6 (2) ◽  
pp. 376-391 ◽  
Author(s):  
Jeffrey J. Hunter

In this paper a unified theory for studying renewal processes in two dimensions is developed. Bivariate generating functions and bivariate Laplace transforms are the basic tools used in generalizing the standard theory of univariate renewal processes. An example involving a bivariate exponential distribution is presented. This is used to illustrate the general theory and explicit expressions for the two-dimensional renewal density, the two-dimensional renewal function, the correlation between the marginal univariate renewal counting processes, and other related quantities are derived.


1974 ◽  
Vol 6 (03) ◽  
pp. 546-562 ◽  
Author(s):  
Jeffrey J. Hunter

In an earlier paper (Renewal theory in two dimensions: Basic results) the author developed a unified theory for the study of bivariate renewal processes. In contrast to this aforementioned work where explicit expressions were obtained, we develop some asymptotic results concerning the joint distribution of the bivariate renewal counting process (N x(1), N y(2)), the distribution of the two-dimensional renewal counting process N x,y and the two-dimensional renewal function &N x,y. A by-product of the investigation is the study of the distribution and moments of the minimum of two correlated normal random variables. A comprehensive bibliography on multi-dimensional renewal theory is also appended.


1979 ◽  
Vol 16 (04) ◽  
pp. 794-802 ◽  
Author(s):  
G. K. Eagleson

Let Y 1, Y2 , · ·· be a sequence of independent, identically distributed random variables, g some symmetric 0–1 function of m variables and set Silverman and Brown (1978) have shown that under certain conditions the statistic is asymptotically distributed as a Poisson random variable. They then use this result to derive limit distributions for various statistics, useful in the analysis of spatial data. In this paper, it is shown that Silverman and Brown's theorem holds under much weaker assumptions; assumptions which involve only the symmetry of the joint distributions of the X il…i m .


1979 ◽  
Vol 16 (4) ◽  
pp. 794-802 ◽  
Author(s):  
G. K. Eagleson

Let Y1, Y2, · ·· be a sequence of independent, identically distributed random variables, g some symmetric 0–1 function of m variables and set Silverman and Brown (1978) have shown that under certain conditions the statistic is asymptotically distributed as a Poisson random variable. They then use this result to derive limit distributions for various statistics, useful in the analysis of spatial data. In this paper, it is shown that Silverman and Brown's theorem holds under much weaker assumptions; assumptions which involve only the symmetry of the joint distributions of the Xil…im.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.


2002 ◽  
Vol 34 (03) ◽  
pp. 609-625 ◽  
Author(s):  
N. Papadatos ◽  
V. Papathanasiou

The random variablesX1,X2, …,Xnare said to be totally negatively dependent (TND) if and only if the random variablesXiand ∑j≠iXjare negatively quadrant dependent for alli. Our main result provides, for TND 0-1 indicatorsX1,x2, …,Xnwith P[Xi= 1] =pi= 1 - P[Xi= 0], an upper bound for the total variation distance between ∑ni=1Xiand a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.


Sign in / Sign up

Export Citation Format

Share Document