A Convenient Way of Taking Wing (and Fuselage) Flexibility into Account in Calculating Undercarriage Loads

1968 ◽  
Vol 72 (688) ◽  
pp. 353-355
Author(s):  
D. Williams

The crudest way of taking account of the airframe superstructure in calculating undercarriage performance is to represent it by a single concentrated mass. Crude as this method is, it is often used by aircraft firms because the only alternative known to them, apparently, is something they hesitate to face. And no wonder, because it means having to represent the wing-fuselage system by a large number of lumped masses and springs, each of which means an extra degree of freedom. This complicated dynamic system has then to be integrated with the undercarriage system, itself complicated by its non-linear characteristics. The natural approach that suggests itself is not to consider the w/f (wing-fuselage) structure ab initio but to make use of its (usually known) normal modes and frequencies. But this is just what cannot be done by existing techniques—hence the present impasse.

The non-linear torsional oscillation of the system is analyzed by means of a variant of Kryloff and Bogoliuboff’s method. It is shown that each mode of the system can perform oscillations of large amplitude in a number of critical speed ranges, and that hysteresis effects and discontinuous jumps in amplitude are to be expected in these speed ranges if the damping is light.


1994 ◽  
Vol 05 (02) ◽  
pp. 299-301
Author(s):  
Lin Libin ◽  
Zheng Xiangyin

Based on cluster model, we have calculated the fundamental vibrational frequencies of rutile by combining ab initio method and Wilson’s GF-matrix method. In the calculation, we have introduced the concept of environment factor α to correct the force field of the cluster model. The results of calculation are in good agreement to the experimental data and the normal modes give us clear physical picture of the crystal vibration.


Sign in / Sign up

Export Citation Format

Share Document