Environmental modifications in a pig growth model for early-weaned piglets

1989 ◽  
Vol 48 (3) ◽  
pp. 591-599
Author(s):  
L. D. Jacobson ◽  
S. G. Cornelius ◽  
K. A. Jordan

ABSTRACTA food-driven pig growth model was developed from two existing mathematical models. The new model predicts daily growth and heat production of early-weaned pigs. An existing pig growth model was altered by replacing the environmental component with a heat transfer model. The heat transfer model was further refined by partitioning latent heat loss between the skin and lungs, adding a thermal resistance for hair coat, and increasing tissue thermal resistance. Results from this combined model were compared with experimental observations of daily piglet growth and heat production at 15°C, 20°C, 25°C and 30°C. Good agreement existed between observed data and model predictions for piglet growth. Heat production predictions did not compare as well with experimental observations as did growth, especially when piglets lost weight.

2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


2016 ◽  
Vol 196 (3) ◽  
pp. 588-597
Author(s):  
Shisheng Wang ◽  
Andrei Rineiski ◽  
Liancheng Guo

2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

Sign in / Sign up

Export Citation Format

Share Document