scholarly journals Derivations on commutative operator algebras

1985 ◽  
Vol 32 (3) ◽  
pp. 415-418
Author(s):  
Mark Spivack

It is well-known that any derivation on a commutative von Neumann algebra is implemented by a bounded operator. In this note we present a simple alternative proof, which generalizes the result further within Hilbert space, and to reflexive Banach spaces.

2010 ◽  
Vol 82 (2) ◽  
pp. 205-210 ◽  
Author(s):  
VOLKER RUNDE

AbstractRecently, Daws introduced a notion of co-representation of abelian Hopf–von Neumann algebras on general reflexive Banach spaces. In this note, we show that this notion cannot be extended beyond subhomogeneous Hopf–von Neumann algebras. The key is our observation that, for a von Neumann algebra 𝔐 and a reflexive operator space E, the normal spatial tensor product $\M \btensor \CB (E)$ is a Banach algebra if and only if 𝔐 is subhomogeneous or E is completely isomorphic to column Hilbert space.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Quanyuan Chen ◽  
Xiaochun Fang ◽  
Changjing Li

Let A be a CSL subalgebra of a von Neumann algebra acting on a Hilbert space H. It is shown that any Jordan (α,β)-derivation on A is an (α,β)-derivation, where α,β are any automorphisms on A. Moreover, the nth power (α,β)-maps on A are investigated.


1989 ◽  
Vol 31 (1) ◽  
pp. 31-47
Author(s):  
Baruch Solel

Let M be a σ-finite von Neumann algebra and α = {αt}t∈A be a representation of a compact abelian group A as *-automorphisms of M. Let Γ be the dual group of A and suppose that Γ is totally ordered with a positive semigroup Σ⊆Γ. The analytic algebra associated with α and Σ iswhere spα(a) is Arveson's spectrum. These algebras were studied (also for A not necessarily compact) by several authors starting with Loebl and Muhly [10].


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


Author(s):  
F. J. Yeadon

In (7) we proved maximal and pointwise ergodic theorems for transformations a of a von Neumann algebra which are linear positive and norm-reducing for both the operator norm ‖ ‖∞ and the integral norm ‖ ‖1 associated with a normal trace ρ on . Here we introduce a class of Banach spaces of unbounded operators, including the Lp spaces defined in (6), in which the transformations α reduce the norm, and in which the mean ergodic theorem holds; that is the averagesconverge in norm.


1977 ◽  
Vol 81 (2) ◽  
pp. 237-243 ◽  
Author(s):  
J. Moffat

In section 3 we shall prove the following results: Let G be a separable locally compact abelian group, R a von Neumann algebra acting on a separable Hilbert space, and α a weakly continuous representation of G by inner *-automorphisms of R, say α(g) = ad Wg with Wg ∈ U(R). Then there is a weakly continuous unitary representation of G, by unitaries in R, implementing α if and only if the Wg's commute with each other. The result was motivated by the proof of (7), theorem 1. Suppose now Gis a discrete amenable group of *-automorphisms of a countably decomposable von Neumann algebra R. In section 3 we give a necessary and sufficient condition for the existence of a faithful normal G-invariant state on R. This generalizes a result of Hajian and Kakutani on invariant measures (2).


2007 ◽  
Vol 14 (04) ◽  
pp. 445-458 ◽  
Author(s):  
Hanna Podsędkowska

The paper investigates correlations in a general theory of quantum measurement based on the notion of instrument. The analysis is performed in the algebraic formalism of quantum theory in which the observables of a physical system are described by a von Neumann algebra, and the states — by normal positive normalized functionals on this algebra. The results extend and generalise those obtained for the classical case where one deals with the full algebra of operators on a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document