scholarly journals On doubly transitive permutation groups

1978 ◽  
Vol 18 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Cheryl E. Praeger

Suppose that G is a doubly transitive permutation group on a finite set Ω and that for α in ω the stabilizer Gα of αhas a set σ = {B1, …, Bt} of nontrivial blocks of imprimitivity in Ω – {α}. If Gα is 3-transitive on σ it is shown that either G is a collineation group of a desarguesian projective or affine plane or no nonidentity element of Gα fixes B pointwise.

1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


1977 ◽  
Vol 23 (3) ◽  
pp. 329-332 ◽  
Author(s):  
Cheryl E. Praeger

AbstractLet G be a transitive permutation group on a finite set of n points, and let P be a Sylow p-subgroup of G for some prime p dividing |G|. We are concerned with finding a bound for the number f of points of the set fixed by P. Of all the orbits of P of length greater than one, suppose that the ones of minimal length have length q, and suppose that there are k orbits of P of length q. We show that f ≦ kp − ip(n), where ip(n) is the integer satisfying 1 ≦ ip(n) ≦ p and n + ip(n) ≡ 0(mod p). This is a generalisation of a bound found by Marcel Herzog and the author, and this new bound is better whenever P has an orbit of length greater than the minimal length q.


1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


1981 ◽  
Vol 89 (3) ◽  
pp. 433-443 ◽  
Author(s):  
K. W. Johnson

The centralizer ring of a permutation representation of a group appears in several contexts. In (19) and (20) Schur considered the situation where a permutation group G acting on a finite set Ω has a regular subgroup H. In this case Ω may be given the structure of H and the centralizer ring is isomorphic to a subring of the group ring of H. Schur used this in his investigations of B-groups. A group H is a B-group if whenever a permutation group G contains H as a regular subgroup then G is either imprimitive or doubly transitive. Surveys of the results known on B-groups are given in (28), ch. IV and (21), ch. 13. In (28), p. 75, remark F, it is noted that the existence of a regular subgroup is not necessary for many of the arguments. This paper may be regarded as an extension of this remark, but the approach here differs slightly from that suggested by Wielandt in that it appears to be more natural to work with transversals rather than cosets.


1977 ◽  
Vol 23 (2) ◽  
pp. 202-206 ◽  
Author(s):  
David Chillag

AbstractA doubly transitive permutation group of degreep2+ 1, pa prime, is proved to be doubly primitive forp≠ 2. We also show that if such a group is not triply transitive then either it is a normal extension ofP S L(2,p2) or the stabilizer of a point is a rank 3 group.


1978 ◽  
Vol 25 (2) ◽  
pp. 145-166
Author(s):  
M. D. Atkinson ◽  
Cheryl E. Praeger

Let G be a doubly transitive permutation group on a finite set Ω, and let Kα be a normal subgroup of the stabilizer Gα of a point α in Ω. If the action of Gα on the set of orbits of Kα in Ω − {α} is 2-primitive with kernel Kα it is shown that either G is a normal extension of PSL(3, q) or Kα ∩ Gγ is a strongly closed subgroup of Gαγ in Gα, where γ ∈ Ω − {α}. If in addition the action of Gα on the set of orbits of Kα is assumed to be 3-transitive, extra information is obtained using permutation theoretic and centralizer ring methods. In the case where Kα has three orbits in Ω − {α} strong restrictions are obtained on either the structure of G or the degrees of certain irreducible characters of G. Subject classification (Amer. Math. Soc. (MOS) 1970: 20 B 20, 20 B 25.


1966 ◽  
Vol 27 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Michio Suzuki

1. When a permutation group G on a set Ω is given, a transitive extension G of G is defined to be a transitive permutation group on the set Γ which is a union of Ω and a new point ∞ such that the stabilizer of ∞ in G1 is isomorphic to G as a permutation group on Ω. The purpose of this paper is to prove that many known simple groups which can be represented as doubly transitive groups admit no transitive extension. Precise statement is found in Theorem 2. For example, the simple groups discovered by Ree [5] do not admit transitive extensions. Theorem 2 includes also a recent result of D. R. Hughes [3] which states that the unitary group U3(q) q>2 does not admit a transitive extension. As an application we prove a recent theorem of H. Nagao [4], which generalizes a theorem of Wielandt on the non-existence of 8-transitive permutation groups not containing the alternating groups under Schreier’s conjecture.


1974 ◽  
Vol 53 ◽  
pp. 103-107 ◽  
Author(s):  
Eiichi Bannai

Wagner [5] and Ito [2] proved the following theorems respectively.THEOREM OF WAGNER. Let G be a triply transitive permutation group on a set Ω = {1,2, …, n}, and let n be odd and n > 4. If H is a normal subgroup (≠1) of G, then H is also triply transitive on Ω.


Sign in / Sign up

Export Citation Format

Share Document