scholarly journals Formal complexity of inverse semigroup rings

1990 ◽  
Vol 41 (3) ◽  
pp. 343-346 ◽  
Author(s):  
Adel A. Shehadah

A ring (R, *) with involution * is called formally complex if implies that all Ai are 0. Let (R, *) be a formally complex ring and let S be an inverse semigroup. Let (R[S], *) be the semigroup ring with involution * defined by . We show that (R[S], *) is a formally complex ring. Let (S, *) be a semigroup with proper involution *(aa* = ab* = bb* ⇒ a = b) and let (R, *′) be a formally complex ring. We give a sufficient condition for (R[S], *′) to be a formally complex ring and this condition is weaker than * being the inverse involution on S. We illustrate this by an example.

2019 ◽  
Vol 31 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Viviane Beuter ◽  
Daniel Gonçalves ◽  
Johan Öinert ◽  
Danilo Royer

Abstract Given a partial action π of an inverse semigroup S on a ring {\mathcal{A}} , one may construct its associated skew inverse semigroup ring {\mathcal{A}\rtimes_{\pi}S} . Our main result asserts that, when {\mathcal{A}} is commutative, the ring {\mathcal{A}\rtimes_{\pi}S} is simple if, and only if, {\mathcal{A}} is a maximal commutative subring of {\mathcal{A}\rtimes_{\pi}S} and {\mathcal{A}} is S-simple. We apply this result in the context of topological inverse semigroup actions to connect simplicity of the associated skew inverse semigroup ring with topological properties of the action. Furthermore, we use our result to present a new proof of the simplicity criterion for a Steinberg algebra {A_{R}(\mathcal{G})} associated with a Hausdorff and ample groupoid {\mathcal{G}} .


2020 ◽  
pp. 1-35
Author(s):  
Daniel Gonçalves ◽  
Benjamin Steinberg

Abstract Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$ ), we show that if the ideals $D_e$ , with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.


2020 ◽  
Vol 18 (1) ◽  
pp. 1491-1500
Author(s):  
Yingdan Ji

Abstract In this paper, we study the strong nil-cleanness of certain classes of semigroup rings. For a completely 0-simple semigroup M={ {\mathcal M} }^{0}(G;I,\text{Λ};P) , we show that the contracted semigroup ring {R}_{0}{[}M] is strongly nil-clean if and only if either |I|=1 or |\text{Λ}|=1 , and R{[}G] is strongly nil-clean; as a corollary, we characterize the strong nil-cleanness of locally inverse semigroup rings. Moreover, let S={[}Y;{S}_{\alpha },{\varphi }_{\alpha ,\beta }] be a strong semilattice of semigroups, then we prove that R{[}S] is strongly nil-clean if and only if R{[}{S}_{\alpha }] is strongly nil-clean for each \alpha \in Y .


Author(s):  
W. D. Munn

SynopsisA necessary and sufficient condition is determined for the modularity of the lattice of congruences on a bisimple inverse semigroup whose semilattice of idempotents is order-anti-isomorphic to the set of natural numbers.


2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1980 ◽  
Vol 32 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Bonnie R. Hardy ◽  
Thomas S. Shores

Throughout this paper the ring R and the semigroup S are commutative with identity; moreover, it is assumed that S is cancellative, i.e., that S can be embedded in a group. The aim of this note is to determine necessary and sufficient conditions on R and S that the semigroup ring R[S] should be one of the following types of rings: principal ideal ring (PIR), ZPI-ring, Bezout, semihereditary or arithmetical. These results shed some light on the structure of semigroup rings and provide a source of examples of the rings listed above. They also play a key role in the determination of all commutative reduced arithmetical semigroup rings (without the cancellative hypothesis on S) which will appear in a forthcoming paper by Leo Chouinard and the authors [4].


1988 ◽  
Vol 110 ◽  
pp. 113-128 ◽  
Author(s):  
Lê Tuân Hoa

Let N denote the set of non-negative integers. An affine semigroup is a finitely generated submonoid S of the additive monoid Nm for some positive integer m. Let k[S] denote the semigroup ring of S over a field k. Then one can identify k[S] with the subring of a polynomial ring k[t1, …, tm] generated by the monomials .


Author(s):  
E. Jespers

AbstractThe following questions are studied: When is a semigroup graded ring left Noetherian, respectively semiprime left Goldie? Necessary sufficient conditions are proved for cancellative semigroup-graded subrings of rings weakly or strongly graded by a polycyclic-by-finite (unique product) group. For semigroup rings R[S] we also give a solution to the problem in case S is an inverse semigroup.


2008 ◽  
Vol 85 (1) ◽  
pp. 75-80
Author(s):  
JAMES EAST

AbstractA submonoid S of a monoid M is said to be cofull if it contains the group of units of M. We extract from the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull submonoid of the coset monoid of its group of units, and show further that this condition is necessary. This yields a simple description of the class of finite monoids which embed in the coset monoids of their group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister, ‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum20 (1980), 255–267] which states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the symmetric group on X. We also explore examples, which are necessarily infinite, of embeddings whose images are not cofull.


2007 ◽  
Vol 83 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Peter Gallagher ◽  
Nik Ruškucs

AbstractThe finite generation and presentation of Schützenberger products of semigroups are investigated. A general necessary and sufficient condition is established for finite generation. The Schützenberger product of two groups is finitely presented as an inverse semigroup if and only if the groups are finitely presented, but is not finitely presented as a semigroup unless both groups are finite.


Sign in / Sign up

Export Citation Format

Share Document