On Terai's conjecture concerning Pythagorean numbers
2000 ◽
Vol 61
(2)
◽
pp. 329-334
In this paper we prove that if a, b, c, r are fixed positive integers satisfying a2 + b2 = cr, gcd(a, b) = 1, a ≡ 3(mod 8), 2 | b, r > 1, 2 ∤ r, and c is a (x,y,z) = (2, 2,r) satisfying x > 1, y > 1 and z > 1.
2011 ◽
Vol 07
(04)
◽
pp. 981-999
◽
2012 ◽
Vol 86
(2)
◽
pp. 348-352
◽
1998 ◽
Vol 74
(5)
◽
pp. 80-81
◽
2016 ◽
Keyword(s):