scholarly journals On Terai's conjecture concerning Pythagorean numbers

2000 ◽  
Vol 61 (2) ◽  
pp. 329-334
Author(s):  
Maohu A. Le

In this paper we prove that if a, b, c, r are fixed positive integers satisfying a2 + b2 = cr, gcd(a, b) = 1, a ≡ 3(mod 8), 2 | b, r > 1, 2 ∤ r, and c is a (x,y,z) = (2, 2,r) satisfying x > 1, y > 1 and z > 1.

2011 ◽  
Vol 07 (04) ◽  
pp. 981-999 ◽  
Author(s):  
TAKAFUMI MIYAZAKI

Let a, b, c be relatively prime positive integers such that ap + bq = cr with fixed integers p, q, r ≥ 2. Terai conjectured that the equation ax + by = cz has no positive integral solutions other than (x, y, z) = (p, q, r) except for specific cases. Most known results on this conjecture concern the case where p = q = 2 and either r = 2 or odd r ≥3. In this paper, we consider the case where p = q = 2 and r > 2 is even, and partially verify Terai's conjecture.


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


2012 ◽  
Vol 86 (2) ◽  
pp. 348-352 ◽  
Author(s):  
ZHI-JUAN YANG ◽  
MIN TANG

AbstractLet a,b,c be relatively prime positive integers such that a2+b2=c2. Half a century ago, Jeśmanowicz [‘Several remarks on Pythagorean numbers’, Wiadom. Mat.1 (1955/56), 196–202] conjectured that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is (x,y,z)=(2,2,2). In this paper, we show that (8n)x+(15n)y=(17n)z has no solution in positive integers other than (x,y,z)=(2,2,2).


2016 ◽  
Author(s):  
David Barner

Perceptual representations – e.g., of objects or approximate magnitudes –are often invoked as building blocks that children combine with linguisticsymbols when they acquire the positive integers. Systems of numericalperception are either assumed to contain the logical foundations ofarithmetic innately, or to supply the basis for their induction. Here Ipropose an alternative to this general framework, and argue that theintegers are not learned from perceptual systems, but instead arise toexplain perception as part of language acquisition. Drawing oncross-linguistic data and developmental data, I show that small numbers(1-4) and large numbers (~5+) arise both historically and in individualchildren via entirely distinct mechanisms, constituting independentlearning problems, neither of which begins with perceptual building blocks.Specifically, I propose that children begin by learning small numbers(i.e., *one, two, three*) using the same logical resources that supportother linguistic markers of number (e.g., singular, plural). Several yearslater, children discover the logic of counting by inferring the logicalrelations between larger number words from their roles in blind countingprocedures, and only incidentally associate number words with perception ofapproximate magnitudes, in an *ad hoc* and highly malleable fashion.Counting provides a form of explanation for perception but is not causallyderived from perceptual systems.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


10.37236/1735 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Dhruv Mubayi ◽  
Yi Zhao

Given positive integers $n,k,t$, with $2 \le k\le n$, and $t < 2^k$, let $m(n,k,t)$ be the minimum size of a family ${\cal F}$ of nonempty subsets of $[n]$ such that every $k$-set in $[n]$ contains at least $t$ sets from ${\cal F}$, and every $(k-1)$-set in $[n]$ contains at most $t-1$ sets from ${\cal F}$. Sloan et al. determined $m(n, 3, 2)$ and Füredi et al. studied $m(n, 4, t)$ for $t=2, 3$. We consider $m(n, 3, t)$ and $m(n, 4, t)$ for all the remaining values of $t$ and obtain their exact values except for $k=4$ and $t= 6, 7, 11, 12$. For example, we prove that $ m(n, 4, 5) = {n \choose 2}-17$ for $n\ge 160$. The values of $m(n, 4, t)$ for $t=7,11,12$ are determined in terms of well-known (and open) Turán problems for graphs and hypergraphs. We also obtain bounds of $m(n, 4, 6)$ that differ by absolute constants.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 605
Author(s):  
Martin Bača ◽  
Zuzana Kimáková ◽  
Marcela Lascsáková ◽  
Andrea Semaničová-Feňovčíková

For a simple graph G with no isolated edges and at most, one isolated vertex, a labeling φ:E(G)→{1,2,…,k} of positive integers to the edges of G is called irregular if the weights of the vertices, defined as wtφ(v)=∑u∈N(v)φ(uv), are all different. The irregularity strength of a graph G is known as the maximal integer k, minimized over all irregular labelings, and is set to ∞ if no such labeling exists. In this paper, we determine the exact value of the irregularity strength and the modular irregularity strength of fan graphs.


Sign in / Sign up

Export Citation Format

Share Document