scholarly journals An embedding theorem for fields

1976 ◽  
Vol 14 (2) ◽  
pp. 193-198 ◽  
Author(s):  
J.W.S. Cassels

It is shown that every finitely generated field K of characteristic 0 may be embedded in infinitely many p-adic fields in such a way that the images of any given finite set C of non-zero elements of K are p-adic units. The result is suggested by Lech's proof of his generalization of Mahler's theorem on recurrent sequences. It also provides a simple proof of Selberg's theorem about torsion-free normal subgroups of matrix groups.

1999 ◽  
Vol 10 (02) ◽  
pp. 207-214 ◽  
Author(s):  
PHAN H. LOI

Using an idea due to Popa, we can associate a commuting square of factors to any given finite set of automorphisms acting on an inclusion of factors of finite index. We use this setting to obtain a simple proof of Popa's classification theorem of strongly outer actions of finitely generated discrete strongly amenable groups on a strongly amenable inclusion of type II 1 factors. We also obtain a new complete outer conjugacy invariant for arbitrary automorphisms, which contains the higher obstruction of Kawahigashi and the standard invariant as a special case.


1977 ◽  
Vol 23 (2) ◽  
pp. 147-165 ◽  
Author(s):  
R. Hirshon

AbstractIf C is a group which satisfies the maximal condition for normal subgroups, then C may be cancelled from a group A in direct products if and only if the infinite cyclic group can be cancelled from A. Finitely generated torsion free nilpotent groups of class 2 satisfy a Remak Krull Schmidt condition.


2010 ◽  
Vol 06 (03) ◽  
pp. 579-586 ◽  
Author(s):  
ARNO FEHM ◽  
SEBASTIAN PETERSEN

A field K is called ample if every smooth K-curve that has a K-rational point has infinitely many of them. We prove two theorems to support the following conjecture, which is inspired by classical infinite rank results: Every non-zero Abelian variety A over an ample field K which is not algebraic over a finite field has infinite rank. First, the ℤ(p)-module A(K) ⊗ ℤ(p) is not finitely generated, where p is the characteristic of K. In particular, the conjecture holds for fields of characteristic zero. Second, if K is an infinite finitely generated field and S is a finite set of local primes of K, then every Abelian variety over K acquires infinite rank over certain subfields of the maximal totally S-adic Galois extension of K. This strengthens a recent infinite rank result of Geyer and Jarden.


1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.


Sign in / Sign up

Export Citation Format

Share Document