scholarly journals Oscillation criteria for second order nonlinear delay inequalities

1976 ◽  
Vol 14 (3) ◽  
pp. 331-341 ◽  
Author(s):  
S. Nababan ◽  
E.S. Noussair

Oscillation criteria are obtained, for the nonlinear delay differential inequality u(u″+f(t, u(t), u(g(t)))) ≤ 0. The main theorems give sufficient conditions (and in some cases sufficient and. necessary conditions) for all solutions u(t) to have arbitrary large zeros. Generalizations to more general cases are discussed.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Qiong Meng ◽  
Zhen Jin ◽  
Guirong Liu

AbstractThis paper studies the linear fractional-order delay differential equation $$ {}^{C}D^{\alpha }_{-}x(t)-px(t-\tau )= 0, $$ D − α C x ( t ) − p x ( t − τ ) = 0 , where $0<\alpha =\frac{\text{odd integer}}{\text{odd integer}}<1$ 0 < α = odd integer odd integer < 1 , $p, \tau >0$ p , τ > 0 , ${}^{C}D_{-}^{\alpha }x(t)=-\Gamma ^{-1}(1-\alpha )\int _{t}^{\infty }(s-t)^{- \alpha }x'(s)\,ds$ D − α C x ( t ) = − Γ − 1 ( 1 − α ) ∫ t ∞ ( s − t ) − α x ′ ( s ) d s . We obtain the conclusion that $$ p^{1/\alpha } \tau >\alpha /e $$ p 1 / α τ > α / e is a sufficient and necessary condition of the oscillations for all solutions of Eq. (*). At the same time, some sufficient conditions are obtained for the oscillations of multiple delays linear fractional differential equation. Several examples are given to illustrate our theorems.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Hassan A. Agwa ◽  
Ahmed M. M. Khodier ◽  
Heba A. Hassan

We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory potential of the formrtg1xt,xΔtΔ+p(t)g2(x(t),xΔ(t))xΔ(t)+q(t)f(x(τ(t)))=e(t), on a time scaleT. We will use a unified approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our results are more general and extend the oscillation criteria of Erbe et al. (2010). Also our results unify the oscillation of the forced second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Fatima N. Ahmed ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din ◽  
Mohd Salmi Md Noorani

Some new sufficient conditions for oscillation of all solutions of the first-order linear neutral delay differential equations are obtained. Our new results improve many well-known results in the literature. Some examples are inserted to illustrate our results.


1989 ◽  
Vol 39 (2) ◽  
pp. 161-165
Author(s):  
Jurang Yan

A necessary and sufficient condition is obtained for a first order linear delay differential inequality to be oscillatory. Our main result improves and extends some known results.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 722
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Osama Moaaz ◽  
Ali Muhib ◽  
Shao-Wen Yao

In this work, we aimed to obtain sufficient and necessary conditions for the oscillatory or asymptotic behavior of an impulsive differential system. It is easy to notice that most works that study the oscillation are concerned only with sufficient conditions and without impulses, so our results extend and complement previous results in the literature. Further, we provide two examples to illustrate the main results.


2020 ◽  
Vol 75 (1) ◽  
pp. 135-146
Author(s):  
Shyam Sundar Santra

AbstractIn this work, we obtain necessary and sufficient conditions for the oscillation of all solutions of second-order half-linear delay differential equation of the form {\left( {r{{\left( {x'} \right)}^\gamma }} \right)^\prime }\left( t \right) + q\left( t \right){x^\alpha }\left( {\tau \left( t \right)} \right) = 0Under the assumption ∫∞(r(n))−1/γdη=∞, we consider the two cases when γ > α and γ < α. Further, some illustrative examples showing applicability of the new results are included, and state an open problem.


2011 ◽  
Vol 8 (3) ◽  
pp. 806-809
Author(s):  
Baghdad Science Journal

Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document