scholarly journals On C*-algebras with the approximate n-th root property

2005 ◽  
Vol 72 (2) ◽  
pp. 197-212 ◽  
Author(s):  
A. Chigogidze ◽  
A. Karasev ◽  
K. Kawamura ◽  
V. Valov

We say that a C*-algebra X has the approximate n-th root property (n ≥ 2) if for every a ∈ X with ∥a∥ ≤ 1 and every ɛ > 0 there exits b ∈ X such that ∥b∥ ≤ 1 and ∥a − bn∥ < ɛ. Some properties of commutative and non-commutative C*-algebras having the approximate n-th root property are investigated. In particular, it is shown that there exists a non-commutative (respectively, commutative) separable unital C*-algebra X such that any other (commutative) separable unital C*-algebra is a quotient of X. Also we illustrate a commutative C*-algebra, each element of which has a square root such that its maximal ideal space has infinitely generated first Čech cohomology.

1980 ◽  
Vol 88 (3) ◽  
pp. 425-428 ◽  
Author(s):  
Christopher J. Mulvey

This paper presents a straightforward proof of the Gel'fand-Naimark theorem for non-commutative C*-algebras with identity, established by Dauns and Hofmann(2) in the context of fields of C*-algebras, by considering instead C*-algebras in categories of sheaves. The proof differs from that of (2,3,4) in obtaining an isometric *-isomorphismfrom the C*-algebra A to the C*-algebra of sections of a C*-algebra Ax in the category of sheaves on the maximal ideal space X of the centre of A, without invoking any arguments which involve completeness (3, Theorem 7·9). Instead, the results of (7) yield immediately the existence of an algebraic isomorphism, the compactness of the maximal ideal space X then being used to prove that Ax is indeed a C*-algebra in the category of sheaves on X and that the isomorphism is isometric. One recovers the representation of (2) by noting (8) that any C*-algebra in the category of sheaves on X is isomorphic to the sheaf of sections of a canonical field of C*-algebras on X.


2010 ◽  
Vol 8 (2) ◽  
pp. 167-179 ◽  
Author(s):  
R. L. Johnson ◽  
C. R. Warner

H1(R) is a Banach algebra which has better mapping properties under singular integrals thanL1(R) . We show that its approximate identity sequences are unbounded by constructing one unbounded approximate identity sequence {vn}. We introduce a Banach algebraQthat properly lies betweenH1andL1, and use it to show thatc(1 + lnn) ≤ ||vn||H1≤Cn1/2. We identify the maximal ideal space ofH1and give the appropriate version of Wiener's Tauberian theorem.


1959 ◽  
Vol 11 ◽  
pp. 297-310 ◽  
Author(s):  
Bernard R. Gelbaum

This paper is concerned with a generalization of some recent theorems of Hausner (1) and Johnson (4; 5). Their result can be summarized as follows: Let G be a locally compact abelian group, A a commutative Banach algebra, B1 = Bl(G,A) the (commutative Banach) algebra of A-valued, Bochner integrable junctions on G, 3m1the maximal ideal space of A, m2the maximal ideal space of L1(G) [the [commutative Banach] algebra of complex-valued, Haar integrable functions on G, m3the maximal ideal space of B1. Then m3and the Cartesian product m1 X m2are homeomorphic when the spaces mi, i = 1, 2, 3, are given their weak* topologies. Furthermore, the association between m3and m1 X m2is such as to permit a description of any epimorphism E3: B1 → B1/m3 in terms of related epimorphisms E1: A → A/M1 and E2:L1(G) → Ll(G)/M2, where M1 is in mi i = 1, 2, 3.


1978 ◽  
Vol 31 (1) ◽  
pp. 298-301 ◽  
Author(s):  
Kwang-nan Chow ◽  
David Protas

2003 ◽  
Vol 2003 (13) ◽  
pp. 817-825
Author(s):  
Terje Hõim ◽  
D. A. Robbins

LetXbe a Banach module over the commutative Banach algebraAwith maximal ideal spaceΔ. We show that there is a norm-decreasing representation ofXas a space of bounded sections in a Banach bundleπ:ℰ→Δ, whose fibers are quotient modules ofX. There is also a representation ofM(X), the space of multipliersT:A→X, as a space of sections in the same bundle, but this representation may not be continuous. These sectional representations subsume results of various authors over the past three decades.


Sign in / Sign up

Export Citation Format

Share Document