scholarly journals A converse of Bernstein's inequality for locally compact groups

1973 ◽  
Vol 9 (2) ◽  
pp. 291-298
Author(s):  
Walter R. Bloom

Let G be a Hausdorff locally compact abelian group, Γ its character group. We shall prove that, if S is a translation-invariant subspace of Lp (G) (p ∈ [1, ∞]),for each a ∈ G and , then is relatively compact (where Σ(f) denotes the spectrum of f). We also obtain a similar result when G is a Hausdorff compact (not necessarily abelian) group. These results can be considered as a converse of Bernstein's inequality for locally compact groups.

1990 ◽  
Vol 42 (1) ◽  
pp. 109-125
Author(s):  
Nakhlé Asmar

(1.1) The conjugate function on locally compact abelian groups. Let G be a locally compact abelian group with character group Ĝ. Let μ denote a Haar measure on G such that μ(G) = 1 if G is compact. (Unless stated otherwise, all the measures referred to below are Haar measures on the underlying groups.) Suppose that Ĝ contains a measurable order P: P + P ⊆P; PU(-P)= Ĝ; and P⋂(—P) =﹛0﹜. For ƒ in ℒ2(G), the conjugate function of f (with respect to the order P) is the function whose Fourier transform satisfies the identity for almost all χ in Ĝ, where sgnP(χ)= 0, 1, or —1, according as χ =0, χ ∈ P\\﹛0﹜, or χ ∈ (—P)\﹛0﹜.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


1968 ◽  
Vol 9 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J. W. Baker

Let H be a group of characters on an (algebraic) abelian group G. In a natural way, we may regard G as a group of characters on H. In this way, we obtain a duality between the two groups G and H. One may pose several problems about this duality. Firstly, one may ask whether there exists a group topology on G for which H is precisely the set of continuous characters. This question has been answered in the affirmative in [1]. We shall say that such a topology is compatible with the duality between G and H. Next, one may ask whether there exists a locally compact group topology on G which is compatible with a given duality and, if so, whether there is more than one such topology. It is this second question (previously considered by other authors, to whom we shall refer below) which we shall consider here.


1959 ◽  
Vol 11 (4) ◽  
pp. 195-206 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact Abelian group, and the set of bounded complex (regular countably-additive Borel) measures on G. It is well known that becomes a Banach space if the norm is defined bythe supremum being over all finite sets of disjoint Borel subsets of G.


1995 ◽  
Vol 118 (2) ◽  
pp. 303-313 ◽  
Author(s):  
Karl H. Hofmann ◽  
Sidney A. Morris ◽  
Sheila Oates-Williams ◽  
V. N. Obraztsov

An open subgroup U of a topological group G is always closed, since U is the complement of the open set . An arbitrary closed subgroup C of G is almost never open, unless G belongs to a small family of exceptional groups. In fact, if G is a locally compact abelian group in which every non-trivial subgroup is open, then G is the additive group δp of p-adic integers or the additive group Ωp of p-adic rationale (cf. Robertson and Schreiber[5[, proposition 7). The fact that δp has interesting properties as a topological group has many roots. One is that its character group is the Prüfer group ℤp∞, which makes it unique inside the category of compact abelian groups. But even within the bigger class of not necessarily abelian compact groups the p-adic group δp is distinguished: it is the only one all of whose non-trivial subgroups are isomorphic (cf. Morris and Oates-Williams[2[), and it is also the only one all of whose non-trivial closed subgroups have finite index (cf. Morris, Oates-Williams and Thompson [3[).


2003 ◽  
Vol 68 (2) ◽  
pp. 345-350
Author(s):  
R. Nair

Let S be a semigroup contained in a locally compact Abelian group G. Let Ĝ denote the Bohr compactification of G. We say that a sequence contained in S is Hartman uniform distributed on G iffor any character χ in Ĝ. Suppose that (Tg)g∈s is a semigroup of measurable measure preserving transformations of a probability space (X, β, μ) and B is an element of the σ-algebra β of positive μ measure. For a map T: X → X and a set A ⊆ X let T−1A denote {x ∈ X: Tx ∈ A}. In an earlier paper, the author showed that if k is Hartman uniform distributed thenIn this paper we show that ≥ cannot be replaced by =. A more detailed discussion of this situation ensues.


1987 ◽  
Vol 39 (1) ◽  
pp. 123-148 ◽  
Author(s):  
Maria L. Torres De Squire

Throughout the whole paper G will be a locally compact abelian group with Haar measure m and dual group Ĝ. The difference of two sets A and B will be denoted by A ∼ B, i.e.,For a function f on G and s ∊ G, the functions f′ and fs will be defined by


Author(s):  
N. Th. Varopoulos

In this paper we shall be mainly concerned with the following three apparently widely differing questions.(a) What are the possible group topologies on an Abelian group that have a given, fixed continuous character group?In developing our theory, we are very strongly motivated by the duality theory of linear topological spaces and in particular by Mackey's theorem of that theory. This important result gives a complete characterization of all locally convex topologies on a linear space that have a given, fixed, separating dual space. The analogue of Mackey's theorem for groups, together with related results, is examined in sections 1 and 2 of part 2 of the paper.(b) What are the properties of topological groups that are denumerable inductive limits of locally compact groups? (See section 1 of part 1 of the paper for definitions.)Our aim here is to extend results known for locally compact groups to this larger class of groups. The topological study of these groups is carried out in section 3 of part 1 of the paper and the really deep results about their characters are proved in section 5 of part 3 of the paper, as applications of the theory developed in that part of the paper, which is a type of harmonic analysis for these groups.(c) What are the properties of certain algebras of measures of a locally compact group G, that strictly contain L1(G), and share most of the pleasing properties of L1(G), that is, they do not have any of the pathological features of the full measure algebra M(G) such as the Wiener–Pitt phenomenon or asymmetry?


Sign in / Sign up

Export Citation Format

Share Document