scholarly journals SOME CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH TWISTED CONVOLUTION

2009 ◽  
Vol 79 (3) ◽  
pp. 405-417 ◽  
Author(s):  
JIZHENG HUANG

AbstractIn this paper, we shall give some characterizations of the Hardy space associated with twisted convolution, including Lusin area integral, Littlewood–Paley g-function and heat maximal function.

2010 ◽  
Vol 12 (01) ◽  
pp. 71-84 ◽  
Author(s):  
JIZHENG HUANG

Let Ω be a strongly Lipschitz domain of ℝn and define Hardy spaces on Ω by non-tangential maximal function. In this paper, we will give a characterization of the Hardy spaces on Ω by Littlwood–Paley–Stein function associated to L, where L is an elliptic second-order divergence operator. In order to get our result, we also consider the Lusin area integral characterization of the Hardy spaces on Ω.


2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Liang Song ◽  
Chaoqiang Tan

LetL=−Δ+Vbe a Schrödinger operator onℝn, whereV∈Lloc1(ℝn)is a nonnegative function onℝn. In this article, we show that the Hardy spacesLon product spaces can be characterized in terms of the Lusin area integral, atomic decomposition, and maximal functions.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2216
Author(s):  
Jun Liu ◽  
Long Huang ◽  
Chenlong Yue

Let p→∈(0,∞)n be an exponent vector and A be a general expansive matrix on Rn. Let HAp→(Rn) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-tangential grand maximal function. In this article, using the known atomic characterization of HAp→(Rn), the authors characterize this Hardy space via molecules with the best possible known decay. As an application, the authors establish a criterion on the boundedness of linear operators from HAp→(Rn) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund operators on HAp→(Rn). In addition, the boundedness of anisotropic Calderón–Zygmund operators from HAp→(Rn) to the mixed-norm Lebesgue space Lp→(Rn) is also presented. The obtained boundedness of these operators positively answers a question mentioned by Cleanthous et al. All of these results are new, even for isotropic mixed-norm Hardy spaces on Rn.


2013 ◽  
Vol 15 (06) ◽  
pp. 1350029 ◽  
Author(s):  
SHAOXIONG HOU ◽  
DACHUN YANG ◽  
SIBEI YANG

Let φ : ℝn× [0,∞) → [0,∞) be a growth function such that φ(x, ⋅) is nondecreasing, φ(x, 0) = 0, φ(x, t) > 0 when t > 0, limt→∞φ(x, t) = ∞, and φ(⋅, t) is a Muckenhoupt A∞(ℝn) weight uniformly in t. In this paper, the authors establish the Lusin area function and the molecular characterizations of the Musielak–Orlicz Hardy space Hφ(ℝn) introduced by Luong Dang Ky via the grand maximal function. As an application, the authors obtain the φ-Carleson measure characterization of the Musielak–Orlicz BMO-type space BMOφ(ℝn), which was proved to be the dual space of Hφ(ℝn) by Luong Dang Ky.


2018 ◽  
Vol 237 ◽  
pp. 39-78
Author(s):  
BO LI ◽  
RUIRUI SUN ◽  
MINFENG LIAO ◽  
BAODE LI

Let $A$ be an expansive dilation on $\mathbb{R}^{n}$ and $\unicode[STIX]{x1D711}:\mathbb{R}^{n}\times [0,\infty )\rightarrow [0,\infty )$ an anisotropic growth function. In this article, the authors introduce the anisotropic weak Musielak–Orlicz Hardy space $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ via the nontangential grand maximal function and then obtain its Littlewood–Paley characterizations in terms of the anisotropic Lusin-area function, $g$-function or $g_{\unicode[STIX]{x1D706}}^{\ast }$-function, respectively. All these characterizations for anisotropic weak Hardy spaces $\mathit{WH}_{A}^{p}(\mathbb{R}^{n})$ (namely, $\unicode[STIX]{x1D711}(x,t):=t^{p}$ for all $t\in [0,\infty )$ and $x\in \mathbb{R}^{n}$ with $p\in (0,1]$) are new. Moreover, the range of $\unicode[STIX]{x1D706}$ in the anisotropic $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of $\mathit{WH}_{A}^{\unicode[STIX]{x1D711}}(\mathbb{R}^{n})$ coincides with the best known range of the $g_{\unicode[STIX]{x1D706}}^{\ast }$-function characterization of classical Hardy space $H^{p}(\mathbb{R}^{n})$ or its weighted variants, where $p\in (0,1]$.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jizheng Huang ◽  
Yu Liu

We give a molecular characterization of the Hardy space associated with twisted convolution. As an application, we prove the boundedness of the local Riesz transform on the Hardy space.


2011 ◽  
Vol 91 (1) ◽  
pp. 125-144 ◽  
Author(s):  
LIANG SONG ◽  
CHAOQIANG TAN ◽  
LIXIN YAN

AbstractLetL=−Δ+Vbe a Schrödinger operator on ℝnwhereVis a nonnegative function in the spaceL1loc(ℝn) of locally integrable functions on ℝn. In this paper we provide an atomic decomposition for the Hardy spaceH1L(ℝn) associated toLin terms of the maximal function characterization. We then adapt our argument to give an atomic decomposition for the Hardy spaceH1L(ℝn×ℝn) on product domains.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Agnieszka Hejna

AbstractFor a normalized root system R in $${\mathbb {R}}^N$$ R N and a multiplicity function $$k\ge 0$$ k ≥ 0 let $${\mathbf {N}}=N+\sum _{\alpha \in R} k(\alpha )$$ N = N + ∑ α ∈ R k ( α ) . We denote by $$dw({\mathbf {x}})=\varPi _{\alpha \in R}|\langle {\mathbf {x}},\alpha \rangle |^{k(\alpha )}\,d{\mathbf {x}}$$ d w ( x ) = Π α ∈ R | ⟨ x , α ⟩ | k ( α ) d x the associated measure in $${\mathbb {R}}^N$$ R N . Let $$L=-\varDelta +V$$ L = - Δ + V , $$V\ge 0$$ V ≥ 0 , be the Dunkl–Schrödinger operator on $${\mathbb {R}}^N$$ R N . Assume that there exists $$q >\max (1,\frac{{\mathbf {N}}}{2})$$ q > max ( 1 , N 2 ) such that V belongs to the reverse Hölder class $$\mathrm{{RH}}^{q}(dw)$$ RH q ( d w ) . We prove the Fefferman–Phong inequality for L. As an application, we conclude that the Hardy space $$H^1_{L}$$ H L 1 , which is originally defined by means of the maximal function associated with the semigroup $$e^{-tL}$$ e - t L , admits an atomic decomposition with local atoms in the sense of Goldberg, where their localizations are adapted to V.


Sign in / Sign up

Export Citation Format

Share Document