scholarly journals Hardy Spaces Associated to Schrödinger Operators on Product Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Liang Song ◽  
Chaoqiang Tan

LetL=−Δ+Vbe a Schrödinger operator onℝn, whereV∈Lloc1(ℝn)is a nonnegative function onℝn. In this article, we show that the Hardy spacesLon product spaces can be characterized in terms of the Lusin area integral, atomic decomposition, and maximal functions.


2011 ◽  
Vol 91 (1) ◽  
pp. 125-144 ◽  
Author(s):  
LIANG SONG ◽  
CHAOQIANG TAN ◽  
LIXIN YAN

AbstractLetL=−Δ+Vbe a Schrödinger operator on ℝnwhereVis a nonnegative function in the spaceL1loc(ℝn) of locally integrable functions on ℝn. In this paper we provide an atomic decomposition for the Hardy spaceH1L(ℝn) associated toLin terms of the maximal function characterization. We then adapt our argument to give an atomic decomposition for the Hardy spaceH1L(ℝn×ℝn) on product domains.



2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Hua Zhu

We characterize the weighted weak local Hardy spacesWhρp(ω)related to the critical radius functionρand weightsω∈A∞ρ,∞(Rn)which locally behave as Muckenhoupt’s weights and actually include them, by the atomic decomposition. As an application, we show that localized Riesz transforms are bounded on the weighted weak local Hardy spaces.





2015 ◽  
Vol 39 (3) ◽  
pp. 533-569 ◽  
Author(s):  
Der-Chen Chang ◽  
Zunwei Fu ◽  
Dachun Yang ◽  
Sibei Yang


2015 ◽  
Vol 23 (2) ◽  
pp. 241-257
Author(s):  
Shichang Shu ◽  
Tianmin Zhu

Abstract In this paper, we would like to study space-like submanifolds in a de Sitter spaces Spn+p(1). We define and discuss three Schrödinger operators LH, LR, LR/H and obtain some spectral characterizations of totally umbilical space-like submanifolds in terms of the first eigenvalue of the Schrödinger operators LH, LR and LR/H respectively.



2014 ◽  
Vol 93 (11) ◽  
pp. 2519-2545 ◽  
Author(s):  
Jun Cao ◽  
Der-Chen Chang ◽  
Dachun Yang ◽  
Sibei Yang




2018 ◽  
Vol 291 (5-6) ◽  
pp. 908-927
Author(s):  
Edyta Kania ◽  
Marcin Preisner


2016 ◽  
Vol 101 (3) ◽  
pp. 290-309 ◽  
Author(s):  
QINGQUAN DENG ◽  
YONG DING ◽  
XIAOHUA YAO

Let$H=-\unicode[STIX]{x1D6E5}+V$be a Schrödinger operator with some general signed potential$V$. This paper is mainly devoted to establishing the$L^{q}$-boundedness of the Riesz transform$\unicode[STIX]{x1D6FB}H^{-1/2}$for$q>2$. We mainly prove that under certain conditions on$V$, the Riesz transform$\unicode[STIX]{x1D6FB}H^{-1/2}$is bounded on$L^{q}$for all$q\in [2,p_{0})$with a given$2<p_{0}<n$. As an application, the main result can be applied to the operator$H=-\unicode[STIX]{x1D6E5}+V_{+}-V_{-}$, where$V_{+}$belongs to the reverse Hölder class$B_{\unicode[STIX]{x1D703}}$and$V_{-}\in L^{n/2,\infty }$with a small norm. In particular, if$V_{-}=-\unicode[STIX]{x1D6FE}|x|^{-2}$for some positive number$\unicode[STIX]{x1D6FE}$,$\unicode[STIX]{x1D6FB}H^{-1/2}$is bounded on$L^{q}$for all$q\in [2,n/2)$and$n>4$.



1998 ◽  
Vol 10 (06) ◽  
pp. 829-850 ◽  
Author(s):  
H. Neidhardt ◽  
V. A. Zagrebnov

We show that any symmetric operator H has a dense maximal b-stability domain [Formula: see text] (i.e. [Formula: see text], b∈R1) if and only if H is unbounded from above. This abstract result allows an application to singular perturbed Schrödinger operators which are not semi-bounded from below, i.e., to the so-called "fall to the center problem". It turns out that in this case the regularization problem is always ill-posed which implies that there is no unique "right Hamiltonian" for corresponding perturbed system. We give an example of singular perturbed Schrödinger operator for which stability domains are described explicitly.



Sign in / Sign up

Export Citation Format

Share Document