scholarly journals THE ROBIN PROBLEM FOR THE HÉNON EQUATION

2013 ◽  
Vol 88 (1) ◽  
pp. 1-11
Author(s):  
HAIYANG HE

AbstractIn this paper, we consider the following Robin problem:$$\begin{eqnarray*}\displaystyle \left\{ \begin{array}{ @{}ll@{}} \displaystyle - \Delta u= \mid x{\mathop{\mid }\nolimits }^{\alpha } {u}^{p} , \quad & \displaystyle x\in \Omega , \\ \displaystyle u\gt 0, \quad & \displaystyle x\in \Omega , \\ \displaystyle \displaystyle \frac{\partial u}{\partial \nu } + \beta u= 0, \quad & \displaystyle x\in \partial \Omega , \end{array} \right.&&\displaystyle\end{eqnarray*}$$where$\Omega $is the unit ball in${ \mathbb{R} }^{N} $centred at the origin, with$N\geq 3$,$p\gt 1$,$\alpha \gt 0$,$\beta \gt 0$, and$\nu $is the unit outward vector normal to$\partial \Omega $. We prove that the above problem has no solution when$\beta $is small enough. We also obtain existence results and we analyse the symmetry breaking of the ground state solutions.

2010 ◽  
Vol 53 (2) ◽  
pp. 245-255 ◽  
Author(s):  
HAIYANG HE

AbstractWe consider in this paper the problem (1) where Ω is the unit ball in ℝN centred at the origin, 0 ≤ α < pN,β > 0, N ≥ 3. Suppose qϵ → q as ϵ → 0+ and qϵ, q satisfy, respectively, we investigate the asymptotic estimates of the ground-state solutions (uϵ, vϵ) of (1) as β → + ∞ with p, qϵ fixed. We also show the symmetry-breaking phenomenon with α, β fixed and qϵ → q as ϵ → 0+. In addition, the ground-state solution is non-radial provided that ϵ > 0 is small or β is large enough.


2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2019 ◽  
Vol 109 (2) ◽  
pp. 193-216 ◽  
Author(s):  
J. C. DE ALBUQUERQUE ◽  
JOÃO MARCOS DO Ó ◽  
EDCARLOS D. SILVA

We study the existence of positive ground state solutions for the following class of $(p,q)$-Laplacian coupled systems $$\begin{eqnarray}\left\{\begin{array}{@{}lr@{}}-\unicode[STIX]{x1D6E5}_{p}u+a(x)|u|^{p-2}u=f(u)+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D706}(x)|u|^{\unicode[STIX]{x1D6FC}-2}u|v|^{\unicode[STIX]{x1D6FD}}, & x\in \mathbb{R}^{N},\\ -\unicode[STIX]{x1D6E5}_{q}v+b(x)|v|^{q-2}v=g(v)+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D706}(x)|v|^{\unicode[STIX]{x1D6FD}-2}v|u|^{\unicode[STIX]{x1D6FC}}, & x\in \mathbb{R}^{N},\end{array}\right.\end{eqnarray}$$ where $1<p\leq q<N$. Here the coefficient $\unicode[STIX]{x1D706}(x)$ of the coupling term is related to the potentials by the condition $|\unicode[STIX]{x1D706}(x)|\leq \unicode[STIX]{x1D6FF}a(x)^{\unicode[STIX]{x1D6FC}/p}b(x)^{\unicode[STIX]{x1D6FD}/q}$, where $\unicode[STIX]{x1D6FF}\in (0,1)$ and $\unicode[STIX]{x1D6FC}/p+\unicode[STIX]{x1D6FD}/q=1$. Using a variational approach based on minimization over the Nehari manifold, we establish the existence of positive ground state solutions for a large class of nonlinear terms and potentials.


Author(s):  
Jun Wang ◽  
Junxiang Xu ◽  
Fubao Zhang

This paper is concerned with the following semilinear elliptic equations of the formwhere ε is a small positive parameter, and where f and g denote superlinear and subcritical nonlinearity. Suppose that b(x) has at least one maximum. We prove that the system has a ground-state solution (ψε, φε) for all sufficiently small ε > 0. Moreover, we show that (ψε, φε) converges to the ground-state solution of the associated limit problem and concentrates to a maxima point of b(x) in certain sense, as ε → 0. Furthermore, we obtain sufficient conditions for nonexistence of ground-state solutions.


2014 ◽  
Vol 58 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Xiaojun Chang

AbstractIn this paper, we study a time-independent fractional Schrödinger equation of the form (−Δ)su + V(x)u = g(u) in ℝN, where N ≥, s ∈ (0,1) and (−Δ)s is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition:


2014 ◽  
Vol 97 (1) ◽  
pp. 48-62 ◽  
Author(s):  
YI CHEN ◽  
X. H. TANG

AbstractIn this paper, we deduce new conditions for the existence of ground state solutions for the $p$-Laplacian equation $$\begin{equation*} \left \{ \begin{array}{@{}ll} -\mathrm {div}(|\nabla u|^{p-2}\nabla u)+V(x)|u|^{p-2}u=f(x, u), \quad x\in {\mathbb {R}}^{N},\\[5pt] u\in W^{1, p}({\mathbb {R}}^{N}), \end{array} \right . \end{equation*}$$ which weaken the Ambrosetti–Rabinowitz type condition and the monotonicity condition for the function $t\mapsto f(x, t)/|t|^{p-1}$. In particular, both $tf(x, t)$ and $tf(x, t)-pF(x, t)$ are allowed to be sign-changing in our assumptions.


Sign in / Sign up

Export Citation Format

Share Document