ON THE BRÜCK CONJECTURE

2015 ◽  
Vol 93 (2) ◽  
pp. 248-259 ◽  
Author(s):  
TINGBIN CAO

The Brück conjecture states that if a nonconstant entire function $f$ with hyper-order ${\it\sigma}_{2}(f)\in [0,+\infty )\setminus \mathbb{N}$ shares one finite value $a$ (counting multiplicities) with its derivative $f^{\prime }$, then $f^{\prime }-a=c(f-a)$, where $c$ is a nonzero constant. The conjecture has been established for entire functions with order ${\it\sigma}(f)<+\infty$ and hyper-order ${\it\sigma}_{2}(f)<{\textstyle \frac{1}{2}}$. The purpose of this paper is to prove the Brück conjecture for the case ${\it\sigma}_{2}(f)=\frac{1}{2}$ by studying the infinite hyper-order solutions of the linear differential equations $f^{(k)}+A(z)f=Q(z)$. The shared value $a$ is extended to be a ‘small’ function with respect to the entire function $f$.

2004 ◽  
Vol 11 (3) ◽  
pp. 409-414
Author(s):  
C. Belingeri

Abstract A recursion formula for the coefficients of entire functions which are solutions of linear differential equations with polynomial coefficients is derived. Some explicit examples are developed. The Newton sum rules for the powers of zeros of a class of entire functions are constructed in terms of Bell polynomials.


2013 ◽  
Vol 21 (2) ◽  
pp. 35-52
Author(s):  
Benharrat Belaïdi ◽  
Habib Habib

Abstract In this paper, we investigate the order and the hyper-order of growth of solutions of the linear differential equation where n≥2 is an integer, Aj (z) (≢0) (j = 1,2) are entire functions with max {σ A(j) : (j = 1,2} < 1, Q (z) = qmzm + ... + q1z + q0 is a nonoonstant polynomial and a1, a2 are complex numbers. Under some conditions, we prove that every solution f (z) ≢ 0 of the above equation is of infinite order and hyper-order 1.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Zhigang Huang

This paper is devoted to studying the growth of solutions of second-order nonhomogeneous linear differential equation with meromorphic coefficients. We also discuss the relationship between small functions and differential polynomialsL(f)=d2f″+d1f′+d0fgenerated by solutions of the above equation, whered0(z),d1(z),andd2(z)are entire functions that are not all equal to zero.


2004 ◽  
Vol 2004 (22) ◽  
pp. 1151-1158 ◽  
Author(s):  
Takeshi Miura ◽  
Go Hirasawa ◽  
Sin-Ei Takahasi

Lethbe an entire function andTha differential operator defined byThf=f′+hf. We show thatThhas the Hyers-Ulam stability if and only ifhis a nonzero constant. We also consider Ger-type stability problem for|1−f′/hf|≤ϵ.


2015 ◽  
Vol 98 (112) ◽  
pp. 199-210
Author(s):  
Maamar Andasmas ◽  
Benharrat Belaïdi

We investigate the growth of meromorphic solutions of homogeneous and nonhomogeneous higher order linear differential equations f(k) + k-1?j=1 Ajf(j) + A0f = 0 (k ? 2); f(k) + k-1 ?j=1 Ajf(j) + A0f = Ak (k ? 2); where Aj(z)(j=0,1,...,k) are meromorphic functions with finite order. Under some conditions on the coefficients, we show that all meromorphic solutions f ?/0 of the above equations have an infinite order and infinite lower order. Furthermore, we give some estimates of their hyper-order, exponent and hyper-exponent of convergence of distinct zeros. We improve the results due to Kwon, Chen and Yang, Bela?di, Chen, Shen and Xu.


1870 ◽  
Vol 18 (114-122) ◽  
pp. 210-212

The principles laid down in my former paper will enable us to integrate a proposed differential equation, when the solution can be expressed in the form—P/Q, where P, Q, to are rational and entire functions of ( x ). Let (α 0 +α 1 x +α 2 x 2 + ... +α m x m ) d n y / dx n + (β 0 +β 1 +β 2 x 2 + ... +α m x m ) d n-1 y / dx n-1 + (γ 0 +γ 1 x +γ 2 x 2 + ... +γ m x m ) d n-2 y / dx n-2 +.... +(λ 0 +λ 1 +λ 2 x 2 + ... +λ m x m ) y =0 be the general linear differential equation of the nth order, where none of the indices of ( x ) in the coefficients of the succeeding terms are greater than those in the coefficients of the two first.


Sign in / Sign up

Export Citation Format

Share Document