ON REAL PARTS OF POWERS OF COMPLEX PISOT NUMBERS

2016 ◽  
Vol 94 (2) ◽  
pp. 245-253 ◽  
Author(s):  
TOUFIK ZAÏMI

We prove that a nonreal algebraic number $\unicode[STIX]{x1D703}$ with modulus greater than $1$ is a complex Pisot number if and only if there is a nonzero complex number $\unicode[STIX]{x1D706}$ such that the sequence of fractional parts $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ has a finite number of limit points. Also, we characterise those complex Pisot numbers $\unicode[STIX]{x1D703}$ for which there is a convergent sequence of the form $(\{\Re (\unicode[STIX]{x1D706}\unicode[STIX]{x1D703}^{n})\})_{n\in \mathbb{N}}$ for some $\unicode[STIX]{x1D706}\in \mathbb{C}^{\ast }$. These results are generalisations of the corresponding real ones, due to Pisot, Vijayaraghavan and Dubickas.

Author(s):  
ARTŪRAS DUBICKAS ◽  
CHRIS SMYTH

AbstractWe show that the number of distinct non-parallel lines passing through two conjugates of an algebraic number α of degree d ≥ 3 is at most [d2/2]-d+2, its conjugates being in general position if this number is attained. If, for instance, d ≥ 4 is even, then the conjugates of α ∈ $\overline{\Q}$ of degree d are in general position if and only if α has 2 real conjugates, d-2 complex conjugates, no three distinct conjugates of α lie on a line and any two lines that pass through two distinct conjugates of α are non-parallel, except for d/2-1 lines parallel to the imaginary axis. Our main result asserts that the conjugates of any Salem number are in general position. We also ask two natural questions about conjugates of Pisot numbers which lead to the equation α1+α2=α3+α4 in distinct conjugates of a Pisot number. The Pisot number $\al_1\,{=}\,(1+\sqrt{3+2\sqrt{5}})/2$ shows that this equation has such a solution.


2016 ◽  
Vol 99 (113) ◽  
pp. 281-285 ◽  
Author(s):  
Toufik Zaïmi

A well-known theorem, due to C. J. Smyth, asserts that two conjugates of a Pisot number, having the same modulus are necessary complex conjugates. We show that this result remains true for K-Pisot numbers, where K is a real algebraic number field. Also, we prove that a j-Pisot number, where j is a natural number, can not have more than 2j conjugates with the same modulus.


2002 ◽  
Vol 166 ◽  
pp. 183-207 ◽  
Author(s):  
Yuki Sano

AbstractWe characterize numbers having purely periodic β-expansions where β is a Pisot number satisfying a certain irreducible polynomial. The main tool of the proof is to construct a natural extension on a d-dimensional domain with a fractal boundary.


2011 ◽  
Vol 54 (1) ◽  
pp. 127-132 ◽  
Author(s):  
TOUFIK ZAIMI

AbstractLet θ be a real number greater than 1, and let (()) be the fractional part function. Then, θ is said to be a Z-number if there is a non-zero real number λ such that ((λθn)) < for all n ∈ ℕ. Dubickas (A. Dubickas, Even and odd integral parts of powers of a real number, Glasg. Math. J., 48 (2006), 331–336) showed that strong Pisot numbers are Z-numbers. Here it is proved that θ is a strong Pisot number if and only if there exists λ ≠ 0 such that ((λα)) < for all$\alpha \in \{ \theta ^{n}\mid n\in \mathbb{N}\} \cup \{ \sum\nolimits_{n=0}^{N}\theta ^{n}\mid \mathit{\}N\in \mathbb{N}\}$. Also, the following characterisation of Pisot numbers among real numbers greater than 1 is shown: θ is a Pisot number ⇔ ∃ λ ≠ 0 such that$\Vert \lambda \alpha \Vert <\frac{1}{% 3}$for all$\alpha \in \{ \sum\nolimits_{n=0}^{N}a_{n}\theta ^{n}\mid$an ∈ {0,1}, N ∈ ℕ}, where ‖λα‖ = min{((λα)), 1 − ((λα))}.


2009 ◽  
Vol 61 (2) ◽  
pp. 264-281 ◽  
Author(s):  
J. P. Bell ◽  
K. G. Hare

Abstract. Let q be an algebraic integer of degree d ≥ 2. Consider the rank of the multiplicative subgroup of ℂ* generated by the conjugates of q. We say q is of full rank if either the rank is d − 1 and q has norm ±1, or the rank is d. In this paper we study some properties of ℤ[q] where q is an algebraic integer of full rank. The special cases of when q is a Pisot number and when q is a Pisot-cyclotomic number are also studied. There are four main results.(1)If q is an algebraic integer of full rank and n is a fixed positive integer, then there are only finitely many m such that disc `ℤ[qm]´ = disc `ℤ[qn]´.(2)If q and r are algebraic integers of degree d of full rank and ℤ[qn] = ℤ[rn] for infinitely many n, then either q = ωr′ or q = Norm(r)2/dω/r′ , where r ′ is some conjugate of r and ω is some root of unity.(3)Let r be an algebraic integer of degree at most 3. Then there are at most 40 Pisot numbers q such that ℤ[q] = ℤ[r].(4)There are only finitely many Pisot-cyclotomic numbers of any fixed order.


1997 ◽  
Vol 49 (5) ◽  
pp. 887-915 ◽  
Author(s):  
Peter Borwein ◽  
Christopher Pinner

AbstractFor a fixed algebraic number α we discuss how closely α can be approximated by a root of a {0, +1, -1} polynomial of given degree. We show that the worst rate of approximation tends to occur for roots of unity, particularly those of small degree. For roots of unity these bounds depend on the order of vanishing, k, of the polynomial at α.In particular we obtain the following. Let BN denote the set of roots of all {0, +1, -1} polynomials of degree at most N and BN(α k) the roots of those polynomials that have a root of order at most k at α. For a Pisot number α in (1, 2] we show thatand for a root of unity α thatWe study in detail the case of α = 1, where, by far, the best approximations are real. We give fairly precise bounds on the closest real root to 1. When k = 0 or 1 we can describe the extremal polynomials explicitly.


2012 ◽  
Vol 64 (2) ◽  
pp. 345-367 ◽  
Author(s):  
James McKee ◽  
Chris Smyth

Abstract We present a general construction of Salem numbers via rational functions whose zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier work. We then consider the “obvious” limit points of the set of Salem numbers produced by our theorems and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we produce all Salem numbers via an interlacing construction.


2018 ◽  
Vol 2019 (23) ◽  
pp. 7379-7405
Author(s):  
Julian Rosen

Abstract A period is a complex number arising as the integral of a rational function with algebraic number coefficients over a region cut out by finitely many inequalities between polynomials with rational coefficients. Although periods are typically transcendental numbers, there is a conjectural Galois theory of periods coming from the theory of motives. This paper formalizes an analogy between a class of periods called multiple zeta values and congruences for rational numbers modulo prime powers (called supercongruences). We construct an analog of the motivic period map in the setting of supercongruences and use it to define a Galois theory of supercongruences. We describe an algorithm using our period map to find and prove supercongruences, and we provide software implementing the algorithm.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Rafael G. Campos ◽  
Marisol L. Calderón

We find approximate expressionsx̃(k,n,a)andỹ(k,n,a)for the real and imaginary parts of thekth zerozk=xk+iykof the Bessel polynomialyn(x;a). To obtain these closed-form formulas we use the fact that the points of well-defined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an implementation of the electrostatic interpretation formulas and then, a fit to the real and imaginary parts as functions ofk,nandais obtained. It is shown that the resulting complex numberx̃(k,n,a)+iỹ(k,n,a)isO(1/n2)-convergent tozkfor fixedk.


2000 ◽  
Vol 23 (11) ◽  
pp. 741-752 ◽  
Author(s):  
Jeff Zeager

It is known that given a regular matrixAand a bounded sequencexthere is a subsequence (respectively, rearrangement, stretching)yofxsuch that the set of limit points ofAyincludes the set of limit points ofx. Using the notion of a statistical limit point, we establish statistical convergence analogues to these results by proving that every complex number sequencexhas a subsequence (respectively, rearrangement, stretching)ysuch that every limit point ofxis a statistical limit point ofy. We then extend our results to the more generalA-statistical convergence, in whichAis an arbitrary nonnegative matrix.


Sign in / Sign up

Export Citation Format

Share Document