scholarly journals The Completed Finite Period Map and Galois Theory of Supercongruences

2018 ◽  
Vol 2019 (23) ◽  
pp. 7379-7405
Author(s):  
Julian Rosen

Abstract A period is a complex number arising as the integral of a rational function with algebraic number coefficients over a region cut out by finitely many inequalities between polynomials with rational coefficients. Although periods are typically transcendental numbers, there is a conjectural Galois theory of periods coming from the theory of motives. This paper formalizes an analogy between a class of periods called multiple zeta values and congruences for rational numbers modulo prime powers (called supercongruences). We construct an analog of the motivic period map in the setting of supercongruences and use it to define a Galois theory of supercongruences. We describe an algorithm using our period map to find and prove supercongruences, and we provide software implementing the algorithm.

2021 ◽  
Vol 382 (2) ◽  
pp. 815-874
Author(s):  
Francis Brown ◽  
Clément Dupont

AbstractWe study open and closed string amplitudes at tree-level in string perturbation theory using the methods of single-valued integration which were developed in the prequel to this paper (Brown and Dupont in Single-valued integration and double copy, 2020). Using dihedral coordinates on the moduli spaces of curves of genus zero with marked points, we define a canonical regularisation of both open and closed string perturbation amplitudes at tree level, and deduce that they admit a Laurent expansion in Mandelstam variables whose coefficients are multiple zeta values (resp. single-valued multiple zeta values). Furthermore, we prove the existence of a motivic Laurent expansion whose image under the period map is the open string expansion, and whose image under the single-valued period map is the closed string expansion. This proves the recent conjecture of Stieberger that closed string amplitudes are the single-valued projections of (motivic lifts of) open string amplitudes. Finally, applying a variant of the single-valued formalism for cohomology with coefficients yields the KLT formula expressing closed string amplitudes as quadratic expressions in open string amplitudes.


2020 ◽  
Vol 14 (10) ◽  
pp. 2685-2712
Author(s):  
Zhongyu Jin ◽  
Jiangtao Li

2015 ◽  
Vol 93 (2) ◽  
pp. 186-193 ◽  
Author(s):  
MASANOBU KANEKO ◽  
MIKA SAKATA

We give three identities involving multiple zeta values of height one and of maximal height: an explicit formula for the height-one multiple zeta values, a regularised sum formula and a sum formula for the multiple zeta values of maximal height.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Masataka Ono ◽  
Shin-ichiro Seki ◽  
Shuji Yamamoto

2018 ◽  
Vol 14 (04) ◽  
pp. 975-987
Author(s):  
Hideki Murahara ◽  
Mika Sakata

An explicit formula for the height-one multiple zeta values (MZVs) was proved by Kaneko and the second author. We give an alternative proof of this result and its generalization. We also prove its counterpart for the finite multiple zeta values (FMZVs).


2010 ◽  
Vol 2010 (24) ◽  
pp. 4628-4697 ◽  
Author(s):  
Dominique Manchon ◽  
Sylvie Paycha

2017 ◽  
Vol 5 ◽  
Author(s):  
FRANCIS BROWN

This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$. We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.


Sign in / Sign up

Export Citation Format

Share Document