scholarly journals Approximate Closed-Form Formulas for the Zeros of the Bessel Polynomials

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Rafael G. Campos ◽  
Marisol L. Calderón

We find approximate expressionsx̃(k,n,a)andỹ(k,n,a)for the real and imaginary parts of thekth zerozk=xk+iykof the Bessel polynomialyn(x;a). To obtain these closed-form formulas we use the fact that the points of well-defined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an implementation of the electrostatic interpretation formulas and then, a fit to the real and imaginary parts as functions ofk,nandais obtained. It is shown that the resulting complex numberx̃(k,n,a)+iỹ(k,n,a)isO(1/n2)-convergent tozkfor fixedk.

1976 ◽  
Vol 19 (3) ◽  
pp. 297-301
Author(s):  
Raymond Leblanc

In this note, we discuss a representation of the class of polynomials with real coefficients having all zeros in a given disk of the complex plane C, in terms of convex combinations of certain extremal polynomials of this class. The result stated in the theorem is known [1] for polynomials having n real zeros in the interval [a.b.]. In the following z will be a complex number and D[(a + b)/2, (b-a)/2] the closed disk of the complex plane centered at the real point (a + b)/2 and having radius (b-a)/2.


Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .


Author(s):  
A. F. Beardon

AbstractThe unwinding number of a complex number was introduced to process automatic computations involving complex numbers and multi-valued complex functions, and has been successfully applied to computations involving branches of the Lambert W function. In this partly expository note we discuss the unwinding number from a purely topological perspective, and link it to the classical winding number of a curve in the complex plane. We also use the unwinding number to give a representation of the branches $$W_k$$ W k of the Lambert W function as a line integral.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012009
Author(s):  
Joshua Feinberg ◽  
Roman Riser

Abstract We review our recent results on pseudo-hermitian random matrix theory which were hitherto presented in various conferences and talks. (Detailed accounts of our work will appear soon in separate publications.) Following an introduction of this new type of random matrices, we focus on two specific models of matrices which are pseudo-hermitian with respect to a given indefinite metric B. Eigenvalues of pseudo-hermitian matrices are either real, or come in complex-conjugate pairs. The diagrammatic method is applied to deriving explicit analytical expressions for the density of eigenvalues in the complex plane and on the real axis, in the large-N, planar limit. In one of the models we discuss, the metric B depends on a certain real parameter t. As t varies, the model exhibits various ‘phase transitions’ associated with eigenvalues flowing from the complex plane onto the real axis, causing disjoint eigenvalue support intervals to merge. Our analytical results agree well with presented numerical simulations.


1977 ◽  
Vol 29 (4) ◽  
pp. 701-706 ◽  
Author(s):  
P. M. Gauthier ◽  
W. Hengartner

Let ƒ be a complex-valued function denned on a closed subset F of the finite complex plane C, and let {Zn} be a sequence on F without limit points. We wish to find an analytic function g which simultaneously approximates ƒ uniformly on F and interpolates ƒ at the points {Zn}.


1996 ◽  
Vol 144 ◽  
pp. 179-182 ◽  
Author(s):  
Dahai Yu

Let T be the unit circle on the complex plane, H2(T) be the usual Hardy space on T, Tø be the Toeplitz operator with symbol Cowen showed that if f1 and f2 are functions in H such that is in Lø, then Tf is hyponormal if and only if for some constant c and some function g in H∞ with Using it, T. Nakazi and K. Takahashi showed that the symbol of hyponormal Toeplitz operator Tø satisfies and and they described the ø solving the functional equation above. Both of their conditions are hard to check, T. Nakazi and K. Takahashi remarked that even “the question about polynomials is still open” [2]. Kehe Zhu gave a computing process by way of Schur’s functions so that we can determine any given polynomial ø such that Tø is hyponormal [3]. Since no closed-form for the general Schur’s function is known, it is still valuable to find an explicit expression for the condition of a polynomial á such that Tø is hyponormal and depends only on the coefficients of ø, here we have one, it is elementary and relatively easy to check. We begin with the most general case and the following Lemma is essential.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
J. R. Pelaez ◽  
A. Rodas ◽  
J. Ruiz de Elvira

AbstractWe provide global parameterizations of $$\pi \pi \rightarrow \pi \pi $$ππ→ππ scattering S0 and P partial waves up to roughly 2 GeV for phenomenological use. These parameterizations describe the output and uncertainties of previous partial-wave dispersive analyses of $$\pi \pi \rightarrow \pi \pi $$ππ→ππ, both in the real axis up to 1.12 $${\mathrm {\,GeV}}$$GeV and in the complex plane within their applicability region, while also fulfilling forward dispersion relations up to 1.43 $${\mathrm {\,GeV}}$$GeV. Above that energy we just describe the available experimental data. Moreover, the analytic continuations of these global parameterizations also describe accurately the dispersive determinations of the $$\sigma /f_0(500)$$σ/f0(500), $$f_0(980)$$f0(980) and $$\rho (770)$$ρ(770) pole parameters.


Sign in / Sign up

Export Citation Format

Share Document