BIPARTITE SUBGRAPHS OF -FREE GRAPHS

2017 ◽  
Vol 96 (1) ◽  
pp. 1-13 ◽  
Author(s):  
QINGHOU ZENG ◽  
JIANFENG HOU

For a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. For an integer $m$ and for a fixed graph $H$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$ as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. We give a general lower bound for $f(m,H)$ which extends a result of Erdős and Lovász and we study this function for any bipartite graph $H$ with maximum degree at most $t\geq 2$ on one side.

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 615
Author(s):  
Hongzhuan Wang ◽  
Piaoyang Yin

Resistance distance is a concept developed from electronic networks. The calculation of resistance distance in various circuits has attracted the attention of many engineers. This report considers the resistance-based graph invariant, the Resistance–Harary index, which represents the sum of the reciprocal resistances of any vertex pair in the figure G, denoted by R H ( G ) . Vertex bipartiteness in a graph G is the minimum number of vertices removed that makes the graph G become a bipartite graph. In this study, we give the upper bound and lower bound of the R H index, and describe the corresponding extremal graphs in the bipartite graph of a given order. We also describe the graphs with maximum R H index in terms of graph parameters such as vertex bipartiteness, cut edges, and matching numbers.


2017 ◽  
Vol 17 (03n04) ◽  
pp. 1741003
Author(s):  
NOVI H. BONG ◽  
JOE RYAN ◽  
KIKI A. SUGENG

Maximum degree-diameter bounded subgraph problem is a problem of constructing the largest possible subgraph of given degree and diameter in a graph. This problem can be considered as a degree-diameter problem restricted to certain host graphs. The MaxDDBS problem with Beneš network as the host graph is discussed in this paper. Beneš network contains a back-to-back buttery network. Even though both networks have maximum degree 4, the structure of their maximum subgraphs are different. We give the constructive lower bound of the largest subgraph of Beneš network of various maximum degrees.


1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Hans L. Bodlaender

International audience In [DO95], Ding and Oporowski proved that for every k, and d, there exists a constant c_k,d, such that every graph with treewidth at most k and maximum degree at most d has domino treewidth at most c_k,d. This note gives a new simple proof of this fact, with a better bound for c_k,d, namely (9k+7)d(d+1) -1. It is also shown that a lower bound of Ω (kd) holds: there are graphs with domino treewidth at least 1/12 × kd-1, treewidth at most k, and maximum degree at most d, for many values k and d. The domino treewidth of a tree is at most its maximum degree.


10.37236/1303 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
Anant P. Godbole ◽  
Ben Lamorte ◽  
Erik Jonathan Sandquist

Let $G_2(n)$ denote a bipartite graph with $n$ vertices in each color class, and let $z(n,t)$ be the bipartite Turán number, representing the maximum possible number of edges in $G_2(n)$ if it does not contain a copy of the complete bipartite subgraph $K(t,t)$. It is then clear that $\zeta(n,t)=n^2-z(n,t)$ denotes the minimum number of zeros in an $n\times n$ zero-one matrix that does not contain a $t\times t$ submatrix consisting of all ones. We are interested in the behaviour of $z(n,t)$ when both $t$ and $n$ go to infinity. The case $2\le t\ll n^{1/5}$ has been treated elsewhere; here we use a different method to consider the overlapping case $\log n\ll t\ll n^{1/3}$. Fill an $n \times n$ matrix randomly with $z$ ones and $\zeta=n^2-z$ zeros. Then, we prove that the asymptotic probability that there are no $t \times t$ submatrices with all ones is zero or one, according as $z\ge(t/ne)^{2/t}\exp\{a_n/t^2\}$ or $z\le(t/ne)^{2/t}\exp\{(\log t-b_n)/t^2\}$, where $a_n$ tends to infinity at a specified rate, and $b_n\to\infty$ is arbitrary. The proof employs the extended Janson exponential inequalities.


2016 ◽  
Vol 59 (3) ◽  
pp. 641-651
Author(s):  
Farzad Shaveisi

AbstractThe annihilating-ideal graph of a commutative ring R, denoted by 𝔸𝔾(R), is a graph whose vertex set consists of all non-zero annihilating ideals and two distinct vertices I and J are adjacent if and only if IJ = (0). Here we show that if R is a reduced ring and the independence number of 𝔸𝔾(R) is finite, then the edge chromatic number of 𝔸𝔾(R) equals its maximum degree and this number equals 2|Min(R)|−1 also, it is proved that the independence number of 𝔸𝔾(R) equals 2|Min(R)|−1, where Min(R) denotes the set of minimal prime ideals of R. Then we give some criteria for a graph to be isomorphic with an annihilating-ideal graph of a ring. For example, it is shown that every bipartite annihilating-ideal graph is a complete bipartite graph with at most two horns. Among other results, it is shown that a ûnite graph 𝔸𝔾(R) is not Eulerian, and that it is Hamiltonian if and only if R contains no Gorenstain ring as its direct summand.


2021 ◽  
Vol 178 (3) ◽  
pp. 267-281
Author(s):  
P. K. Neethu ◽  
S.V. Ullas Chandran ◽  
Manoj Changat ◽  
Sandi Klavžar

The general position number gp(G) of a graph G is the cardinality of a largest set of vertices S such that no element of S lies on a geodesic between two other elements of S. The complementary prism G G ¯ of G is the graph formed from the disjoint union of G and its complement G ¯ by adding the edges of a perfect matching between them. It is proved that gp(G G ¯ ) ≤ n(G) + 1 if G is connected and gp(G G ¯ ) ≤ n(G) if G is disconnected. Graphs G for which gp(G G ¯ ) = n(G) + 1 holds, provided that both G and G ¯ are connected, are characterized. A sharp lower bound on gp(G G ¯ ) is proved. If G is a connected bipartite graph or a split graph then gp(G G ¯ ) ∈ {n(G), n(G)+1}. Connected bipartite graphs and block graphs for which gp(G G ¯ ) = n(G) + 1 holds are characterized. A family of block graphs is constructed in which the gp-number of their complementary prisms is arbitrary smaller than their order.


Sign in / Sign up

Export Citation Format

Share Document