scholarly journals On the General Position Number of Complementary Prisms

2021 ◽  
Vol 178 (3) ◽  
pp. 267-281
Author(s):  
P. K. Neethu ◽  
S.V. Ullas Chandran ◽  
Manoj Changat ◽  
Sandi Klavžar

The general position number gp(G) of a graph G is the cardinality of a largest set of vertices S such that no element of S lies on a geodesic between two other elements of S. The complementary prism G G ¯ of G is the graph formed from the disjoint union of G and its complement G ¯ by adding the edges of a perfect matching between them. It is proved that gp(G G ¯ ) ≤ n(G) + 1 if G is connected and gp(G G ¯ ) ≤ n(G) if G is disconnected. Graphs G for which gp(G G ¯ ) = n(G) + 1 holds, provided that both G and G ¯ are connected, are characterized. A sharp lower bound on gp(G G ¯ ) is proved. If G is a connected bipartite graph or a split graph then gp(G G ¯ ) ∈ {n(G), n(G)+1}. Connected bipartite graphs and block graphs for which gp(G G ¯ ) = n(G) + 1 holds are characterized. A family of block graphs is constructed in which the gp-number of their complementary prisms is arbitrary smaller than their order.

Author(s):  
Diane Castonguay ◽  
Erika Morais Martins Coelho ◽  
Hebert Coelho ◽  
Julliano Nascimento

In the geodetic convexity, a set of vertices $S$ of a graph $G$ is \textit{convex} if all vertices belonging to any shortest path between two vertices of $S$ lie in $S$. The \textit{convex hull} $H(S)$ of $S$ is the smallest convex set containing $S$. If $H(S) = V(G)$, then $S$ is a \textit{hull set}. The cardinality $h(G)$ of a minimum hull set of $G$ is the \textit{hull number} of $G$. The \textit{complementary prism} $G\overline{G}$ of a graph $G$ arises from the disjoint union of the graph $G$ and $\overline{G}$ by adding the edges of a perfect matching between the corresponding vertices of $G$ and $\overline{G}$. A graph $G$ is \textit{autoconnected} if both $G$ and $\overline{G}$ are connected. Motivated by previous work, we study the hull number for complementary prisms of autoconnected graphs. When $G$ is a split graph, we present lower and upper bounds showing that the hull number is unlimited. In the other case, when $G$ is a non-split graph, it is limited by $3$.


2018 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Milica Andeelić ◽  
Domingos M. Cardoso ◽  
António Pereira

Abstract A new lower bound on the largest eigenvalue of the signless Laplacian spectra for graphs with at least one (κ,τ)regular set is introduced and applied to the recognition of non-Hamiltonian graphs or graphs without a perfect matching. Furthermore, computational experiments revealed that the introduced lower bound is better than the known ones. The paper also gives sufficient condition for a graph to be non Hamiltonian (or without a perfect matching).


2008 ◽  
Vol 429 (11-12) ◽  
pp. 2770-2780 ◽  
Author(s):  
Domingos M. Cardoso ◽  
Dragoš Cvetković ◽  
Peter Rowlinson ◽  
Slobodan K. Simić

2018 ◽  
Author(s):  
Priscila Camargo ◽  
Alan D. A. Carneiro ◽  
Uéverton S. Santos

The complementary prism GG¯ arises from the disjoint union of the graph G and its complement G¯ by adding the edges of a perfect matching joining pairs of corresponding vertices of G and G¯. The classical problems of graph theory, clique and independent set were proved NP-complete when the input graph is a complemantary prism. In this work, we study the complexity of both problems in complementary prisms graphs from the parameterized complexity point of view. First, we prove that these problems have a kernel and therefore are Fixed-Parameter Tractable (FPT). Then, we show that both problems do not admit polynomial kernel.


Filomat ◽  
2014 ◽  
Vol 28 (2) ◽  
pp. 421-428 ◽  
Author(s):  
Yan Zhu ◽  
Renying Chang

The harmonic index H(G) of a graph G is defined as the sum of weights 2/ d(u)+d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we first present a sharp lower bound on the harmonic index of bicyclic conjugated molecular graphs (bicyclic graphs with perfect matching). Also a sharp lower bound on the harmonic index of bicyclic graphs is given in terms of the order and given size of matching.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


Sign in / Sign up

Export Citation Format

Share Document