WIGNER’S THEOREM IN -TYPE SPACES

2017 ◽  
Vol 97 (2) ◽  
pp. 279-284 ◽  
Author(s):  
WEIKE JIA ◽  
DONGNI TAN

We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces.

2015 ◽  
Vol 38 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Arya JAMSHIDI ◽  
Fereshteh SADY

1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


2017 ◽  
Vol 96 (3) ◽  
pp. 479-486 ◽  
Author(s):  
RADOSŁAW ŁUKASIK

We present the form of the solutions $f:S\rightarrow \mathbb{C}$ of the functional equation $$\begin{eqnarray}\mathop{\sum }_{\unicode[STIX]{x1D706}\in K}f(x+\unicode[STIX]{x1D706}y)=|K|f(x)f(y)\quad \text{for }x,y\in S,\end{eqnarray}$$ where $f$ satisfies the condition $f(\sum _{\unicode[STIX]{x1D706}\in K}\unicode[STIX]{x1D706}x)\neq 0$ for all $x\in S$, $(S,+)$ is an abelian semigroup and $K$ is a subgroup of the automorphism group of $S$.


2018 ◽  
Vol 97 (3) ◽  
pp. 459-470 ◽  
Author(s):  
IZ-IDDINE EL-FASSI ◽  
JANUSZ BRZDĘK

Motivated by the notion of Ulam stability, we investigate some inequalities connected with the functional equation $$\begin{eqnarray}f(xy)+f(x\unicode[STIX]{x1D70E}(y))=2f(x)+h(y),\quad x,y\in G,\end{eqnarray}$$ for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.


1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,


1969 ◽  
Vol 12 (6) ◽  
pp. 837-846 ◽  
Author(s):  
John A. Baker

Consider the functional equation(1)assumed valid for all real x, y and h. Notice that (1) can be written(2)a difference analogue of the wave equation, if we interpret etc., (i. e. symmetric h differences), and that (1) has an interesting geometric interpretation. The continuous solutions of (1) were found by Sakovič [5].


Sign in / Sign up

Export Citation Format

Share Document