The Penetration of Derris through the Spiracles and Cuticle of Melophagus ovinus, L.

1946 ◽  
Vol 36 (1) ◽  
pp. 15-22 ◽  
Author(s):  
J. E. Webb

In Melophagus ovinus, derris dust is shown to be absorbed through the spiracles and tracheal system. The amount of dust entering the tracheae is governed by the structure of the inspiratory spiracles and the rate of flow of the inspired air.Factors stimulating the rate of respiration of the insect—i.e., increased muscular activity, the presence of 5 per cent. carbon dioxide and a rise in temperature, increase the rate of entry of derris into the body.Penetration of derris takes place slowly through the external cuticle at 30° C., but not at all at 20°C. It is postulated that the entry of derris through the cuticle probably depends on the hardness of the lipoid layer.

A considerable amount of work has been done with regard to the water-balance of insects (recently summarized by Buxton, 1932), and on the physical laws governing the water loss from insects, but as yet no one has determined exactly from what part of the insect’s body water is lost. It has been found that when insects are not excreting at all, considerable amounts of water are evaporated from their bodies—quantities frequently sufficient to cause death from desiccation. There are three possible ways in which an insect might lose this water (apart from the alimentary canal) : (i) through the general surface of the body wall; (ii) through the spiracular system; and (iii) partly from the body surface and partly through the spiracular system. The fact that carbon dioxide passes readily through chitin (Dewitz, 1890), and that insects get rid of some of that gas through their integument (v. Buddenbrock and Rohr, 1922), suggests that watervapour may also pass from the insect's body in a similar manner. However, Hazelhoff (1927) states that resting insects keep their spiracles closed most of the time, only opening them sufficiently often to obtain enough oxygen, in order to conserve water. He believes that most of the water is lost through the tracheal system. The observations of Gunn (1933) on the cockroach and Mellanby (1932, b ) on the mealworm also suggest that a high proportion of the water evaporated from those insects is lost through the spiracles. The experiments described in this paper show how spiracular opening affects the rate at which insects lose water by evaporation, and the results obtained make it possible to say from what parts of the body this loss takes place.


1985 ◽  
Vol 110 (3_Suppla) ◽  
pp. S11-S18 ◽  
Author(s):  
H. Kopera

Metabolism is the term employed to embrace the various physical and chemical processes occurring within the tissues upon which the growth and heat production of the body depend and from which the energy for muscular activity, for the maintenance of vital activity and for the maintenance of vital functions is derived (Best & Taylor 1950). The destructive processes by which complex substances are converted by living cells into more simple compounds are called catabolism. Anabolism denotes the constructive processes by which simple substances are converted by living cells into more complex compounds, especially into living matter. Catabolism and anabolism are part of all metabolic processes, the carbohydrate, fat and protein metabolism. The term anabolic refers only to substances that exert an anabolic effect on protein metabolism and are unlikely to cause adverse androgenic effects. They shift the equilibrium between protein synthesis and degradation in the body as a whole in the direction of synthesis, either by promoting protein synthesis or reducing its breakdown. The protein anabolic effect of anabolic steroids is not restricted to single organs but is the result of stimulated biosynthesis of cellular protein in the whole organism.


1973 ◽  
Vol 14 (1) ◽  
pp. 21-25 ◽  
Author(s):  
C. Xanalatos ◽  
Lindsay MacDonell ◽  
E. Larbi ◽  
I. M. James

Water exchange between insects and their environment via the vapour phase includes influx and efflux components. The pressure cycle theory postulates that insects (and some other arthropods) can regulate the relative rates of influx and efflux of water vapour by modulating hydrostatic pressures at a vapour-liquid interface by compressing or expanding a sealed, gas-filled cavity. Some such cavities, like the tracheal system, could be compressed by elevated pressure in all or part of the haemocoele. Others, perhaps including the muscular rectum of flea prepupae, could be compressed by intrinsic muscles. Maddrell Insect Physiol . 8, 199 (1971)) suggested a pressure cycle mechanism of this kind to account for rectal uptake of water vapour in Thermobia but did not find it compatible with quantitative information then available. Newer evidence conforms better with the proposed mechanism. Cyclical pressure changes are of widespread occurrence in insects and have sometimes been shown to depend on water status. Evidence is reviewed for the role of the tracheal system as an avenue for net exchange of water between the insect and its environment. Because water and respiratory gases share common pathways, most published findings fail to distinguish between the conventional view that the tracheal system has evolved as a site for distribution and exchange of respiratory gases and that any water exchange occurring in it is generally incidental and nonadaptive, and the theory proposed here. The pressure cycle theory offers a supplementary explanation not incompatible with evidence so far available. The relative importance of water economy and respiratory exchange in the functioning of compressible cavities such as the tracheal system remains to be explored. Some further implications of the pressure cycle theory are discussed. Consideration is given to the possible involvement of vapour-phase transport in the internal redistribution of water within the body. It is suggested that some insect wings may constitute internal vapour-liquid exchange sites, where water can move from the body fluids to the intratracheal gas. Ambient and body temperature must influence rates of vapour-liquid mass transfer. If elevated body temperature promotes evaporative discharge of the metabolic water burden that has been shown to accumulate during flight in some large insects, their minimum threshold thoracic temperature for sustained flight may relate to the maintenance of water balance. The role of water economy in the early evolution of insect wings is considered. Pressure cycles might help to maintain water balance in surface-breathing insects living in fresh and saline waters, but the turbulence of the surface of the open sea might prevent truly marine forms from using this mechanism.


1968 ◽  
Vol 48 (2) ◽  
pp. 427-434
Author(s):  
A. E. BRAFIELD

1. The oxygen consumption of the echiuroid Bonellia viridis has been investigated by means of a continuous-flow polarographic respirometer. 2. The general rate of oxygen consumption per unit dry weight is similar to that characteristic of polychaetes, and declines exponentially with increasing body size. 3. The rate of oxygen consumption rises in the light and falls again if darkness is restored. 4. The oxygen consumption of the isolated proboscis plus that of the isolated body region corresponds closely to that of the entire animal. 5. The oxygen consumption per unit dry weight of the proboscis is considerably higher than that of the body region. 6. The oxygen consumption of an isolated body region increases in the presence of light, but that of an isolated proboscis does not. 7. These findings are discussed in relation to the biology of the animal, observed muscular activity, and the occurrence of the pigment bonellin.


2022 ◽  
Vol 11 (1) ◽  
pp. 1-27
Author(s):  
Luis F. C. Figueredo ◽  
Rafael De Castro Aguiar ◽  
Lipeng Chen ◽  
Thomas C. Richards ◽  
Samit Chakrabarty ◽  
...  

This work addresses the problem of planning a robot configuration and grasp to position a shared object during forceful human-robot collaboration, such as a puncturing or a cutting task. Particularly, our goal is to find a robot configuration that positions the jointly manipulated object such that the muscular effort of the human, operating on the same object, is minimized while also ensuring the stability of the interaction for the robot. This raises three challenges. First, we predict the human muscular effort given a human-robot combined kinematic configuration and the interaction forces of a task. To do this, we perform task-space to muscle-space mapping for two different musculoskeletal models of the human arm. Second, we predict the human body kinematic configuration given a robot configuration and the resulting object pose in the workspace. To do this, we assume that the human prefers the body configuration that minimizes the muscular effort. And third, we ensure that, under the forces applied by the human, the robot grasp on the object is stable and the robot joint torques are within limits. Addressing these three challenges, we build a planner that, given a forceful task description, can output the robot grasp on an object and the robot configuration to position the shared object in space. We quantitatively analyze the performance of the planner and the validity of our assumptions. We conduct experiments with human subjects to measure their kinematic configurations, muscular activity, and force output during collaborative puncturing and cutting tasks. The results illustrate the effectiveness of our planner in reducing the human muscular load. For instance, for the puncturing task, our planner is able to reduce muscular load by 69.5\% compared to a user-based selection of object poses.


1981 ◽  
Vol 62 (5) ◽  
pp. 59-62
Author(s):  
U. Y. Bogdanovich

For the purpose of laser phototherapy, helium-neon lasers with a wavelength of 632.8 nm and an output power of 15-25 mW are most often used today. For the treatment of patients with long-term healing wounds, trophic ulcers and bone fractures, the "Clinic" device was made on the basis of a carbon dioxide laser with a wavelength of 10.6 m, in which two LG-23 generators are used, which makes it possible to simultaneously irradiate two affected areas of the body or two sick.


2008 ◽  
Vol 6 ◽  
pp. 1-14 ◽  
Author(s):  
Shiho Sawai ◽  
Youhei Takai ◽  
Kiyomi Saegusa ◽  
Tamiko Yoshioka ◽  
Tetsuo Fukunaga

2017 ◽  
Vol 29 (4) ◽  
pp. 194-200 ◽  
Author(s):  
Ho-Jin Jeong ◽  
Yong-Seong Kim ◽  
Woon-Soo Cho ◽  
Won-Gi Kim ◽  
Yong-Beom Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document