scholarly journals The Elliptic Cylinder Functions of the Second Kind

1914 ◽  
Vol 33 ◽  
pp. 2-13 ◽  
Author(s):  
E. Lindsay Ince

The differential equation of Mathieu, or the equation of the elliptic cylinder functionsis known by the theory of linear differential equations to have a general solution of the typeφ and ψ being periodic functions of z, with period 2π.

1913 ◽  
Vol 32 ◽  
pp. 75-80 ◽  
Author(s):  
E. T. Whittaker

The differential equation of Mathieu, or “equation of the elliptic cylinder functions,”occurs in many physical and astronomical problems. From the general theory of linear differential equations, we learn that its solution is of the typewhere A and B denote arbitrary constants, μ is a constant depending on the constants a and q of the differential equation, and φ(z) and ψ(z) are periodic functions of z. For certain values of a and q the constant μ vanishes, and the solution y is then a purely periodic function of z; but in general μ is different from zero.


1975 ◽  
Vol 27 (3) ◽  
pp. 508-512
Author(s):  
G. B. Gustafson ◽  
S. Sedziwy

Consider the wth order scalar ordinary differential equationwith pr ∈ C([0, ∞) → R ) . The purpose of this paper is to establish the following:DECOMPOSITION THEOREM. The solution space X of (1.1) has a direct sum Decompositionwhere M1 and M2 are subspaces of X such that(1) each solution in M1\﹛0﹜ is nonzero for sufficiently large t ﹛nono sdilatory) ;(2) each solution in M2 has infinitely many zeros ﹛oscillatory).


1916 ◽  
Vol 8 (123) ◽  
pp. 258-262
Author(s):  
Eric H. Neville

There are two ways in which the solution of a particular linear differential equation may “fail” although the solulion of a more general equation obtained by replacing certain constants by parameters is complete.where D as usual stands for d/dx.For the general equation(D — l)(D — m)y = enxthe perfectly general solution isA, B being independent arbitrary constants, but if we attempt to apply this solution to the particular equation (l), we find in the first place that the coincidence of n with l and m renders the first term infinite, and in the second place that the coincidence of m with l leaves us with only one effective constant, A + B. The method by which in the commoner textbooks the passage from the general solution to that of a particular equation is made in such cases as this is unconvincing.


1965 ◽  
Vol 14 (4) ◽  
pp. 257-268 ◽  
Author(s):  
J. Burlak

In 1950, Wintner (11) showed that if the function f(x) is continuous on the half-line [0, ∞) and, in a certain sense, is “ small when x is large ” then the differential equationdoes not have L2 solutions, where the function y(x) satisfying (1) is called an L2 solution if


Author(s):  
Guan Ke-ying ◽  
W. N. Everitt

SynopsisThere exists a relation (1.5) between any n + 2 distinct particular solutions of the differential equationIn this paper, we show that when and only when n = 0, 1 and 2, this relation can be represented by the following form:provided the form of this relation function Φn depends only on n and is independent of the coefficients of the equation. This result reveals interesting properties of these non-linear differential equations.


2017 ◽  
Vol 23 (3) ◽  
pp. 24-29
Author(s):  
Vasile Căruțașu

Abstract For n-th order linear differential equations with constant coefficients, the problem to be solved is related to determining a particular solution, and then, with the general solution of n-th homogeneous linear differential equation with constant coefficients attached, to write the general solution of n-th linear differential equation with the given constant coefficients. In all the works that deal with this issue three situations are analyzed: the situation in which the free term is a polynomial P(x), the situation in which the free term is like P(x)· eα·x and lastly, the situation in which the free term is like eω·x · (P(x)· cos(β·x)+ Q(x)·sin(β·x)). In this study we aim to analyze if the free term is a combination of the three cases mentioned.


1952 ◽  
Vol 38 ◽  
pp. 13-16 ◽  
Author(s):  
Hans Bückner

Consider the nth order differential equationwhere the coefficients cv are real constants and f is a real function continuous in the interval a≦ x ≦ b. The following theorem will be proved in §4:If the characteristic equation of (I) has no purely imaginary roots, then a particular integral η (x) can always be found which satisfies the inequalitywhere C is a certain function of the cv only and M is the maximum of |f|. In particular we may take C = 1 if all roots of the characteristic equation are real.


Author(s):  
James S. W. Wong

SynopsisThis paper is concerned with solutions of the ordinary differential equationwhere ℒ is a real formally self-adjoint, linear differential expression of order 2n, and the perturbed term f satisfiesfor some σ∈[0, 1]. Here λ(·) is locally integrable on [0,∞).In particular it is shown, under circumstances detailed in the text, that (*) possesses solutions in the Hilbert function space L2(0,∞).


1920 ◽  
Vol 39 ◽  
pp. 21-24 ◽  
Author(s):  
Pierre Humbert

The polynomials which satisfy linear differential equations of the second order and of the hypergeometric type have been the object of extensive work, and very few properties of them remain now hidden; the student who seeks in that direction a subject for research is compelled to look, not after these functions themselves but after generalisations of them. Among these may be set in first place the polynomials connected with a differential equation of the third order and of the extended hypergeometric type, of which a general theory has been given by Goursat. The number of such polynomials of which properties have been studied in particular is rather small; in fact, Appell's polynomialsand Pincherle's polynomials, arising from the expansionsare, so far as I know, the only well-known ones. To show what can be done in these ways, I shall briefly give the definition and principal properties of some polynomials analogous to Pincherle's and of some allied functions.


1971 ◽  
Vol 23 (4) ◽  
pp. 699-703 ◽  
Author(s):  
A. Howe

Multiparameter eigenvalue problems for systems of linear differential equations with homogeneous boundary conditions have been considered by Ince [4] and Richardson [5, 6], and more recently Faierman [3] has considered their completeness and expansion theorems. A survey of eigenvalue problems with several parameters, in mathematics, is given by Atkinson [1].We consider the two differential equations:1a1bwhere p1’(x), q1(x), A1(x), B1(x) and p2’(y), q2(y), A2(y), B2(y) are continuous for x ∈ [a1, b1] and y ∈ [a2, b2] respectively, and p1 (x) > 0(x ∈ [a1, b1]), p2(y) > 0 (y ∈ [a2, b2]), p1(a1) = p1(b1), p2(a2) = p2(b2). The differential equations (1) will be subjected to the periodic boundary conditions.2a2bLet us consider a single differential equation


Sign in / Sign up

Export Citation Format

Share Document