scholarly journals Random spanning trees of Cayley graphs and an associated compactification of semigroups

1999 ◽  
Vol 42 (3) ◽  
pp. 611-620
Author(s):  
Steven N. Evans

A sequential construction of a random spanning tree for the Cayley graph of a finitely generated, countably infinite subsemigroup V of a group G is considered. At stage n, the spanning tree T isapproximated by a finite tree Tn rooted at the identity.The approximation Tn+1 is obtained by connecting edges to the points of V that are not already vertices of Tn but can be obtained from vertices of Tn via multiplication by a random walk step taking values in the generating set of V. This construction leads to a compactification of the semigroup V inwhich a sequence of elements of V that is not eventually constant is convergent if the random geodesic through the spanning tree T that joins the identity to the nth element of the sequence converges in distribution as n→∞. The compactification is identified in a number of examples. Also, it is shown that if h(Tn) and #(Tn) denote, respectively, the height and size of the approximating tree Tn, then there are constants 0<ch≤1 and 0≥c# ≤log2 such that limn→∞ n–1 h(Tn)= ch and limn→∞n–1 log# (Tn)= c# almost surely.

Author(s):  
V. S. Guba

By the density of a finite graph we mean its average vertex degree. For an [Formula: see text]-generated group, the density of its Cayley graph in a given set of generators, is the supremum of densities taken over all its finite subgraphs. It is known that a group with [Formula: see text] generators is amenable if and only if the density of the corresponding Cayley graph equals [Formula: see text]. A famous problem on the amenability of R. Thompson’s group [Formula: see text] is still open. Due to the result of Belk and Brown, it is known that the density of its Cayley graph in the standard set of group generators [Formula: see text], is at least [Formula: see text]. This estimate has not been exceeded so far. For the set of symmetric generators [Formula: see text], where [Formula: see text], the same example only gave an estimate of [Formula: see text]. There was a conjecture that for this generating set equality holds. If so, [Formula: see text] would be non-amenable, and the symmetric generating set would have the doubling property. This would mean that for any finite set [Formula: see text], the inequality [Formula: see text] holds. In this paper, we disprove this conjecture showing that the density of the Cayley graph of [Formula: see text] in symmetric generators [Formula: see text] strictly exceeds [Formula: see text]. Moreover, we show that even larger generating set [Formula: see text] does not have doubling property.


2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.


Author(s):  
Yanhui Wang ◽  
Yuhan Wang ◽  
Xueming Ren ◽  
Kar Ping Shum

Quasi-automatic semigroups are extensions of a Cayley graph of an automatic group. Of course, a quasi-automatic semigroup generalizes an automatic semigroup. We observe that a semigroup [Formula: see text] may be automatic only when [Formula: see text] is finitely generated, while a semigroup may be quasi-automatic but it is not necessary finitely generated. Similar to the usual automatic semigroups, a quasi-automatic semigroup is closed under direct and free products. Furthermore, a semigroup [Formula: see text] is graph automatic if and only if [Formula: see text] with a zero element adjoined is graph automatic, and also a semigroup [Formula: see text] is graph automatic if and only if [Formula: see text] with an identity element adjoined is graph automatic. However, the class of quasi-automatic semigroups is a much wider class than the class of automatic semigroups. In this paper, we show that every automatic semigroup is quasi-automatic but the converse statement is not true (see Example 3.6). In addition, we notice that the quasi-automatic semigroups are invariant under the changing of generators, while a semigroup may be automatic with respect to a finite generating set but not the other. Finally, the connection between the quasi-automaticity of two semigroups [Formula: see text] and [Formula: see text], where [Formula: see text] is a subsemigroup with finite Rees index in [Formula: see text] will be investigated and considered.


2007 ◽  
Vol 38 (4) ◽  
pp. 341-345 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
I. Rani

A Cayley graph is a graph constructed out of a group $ \Gamma $ and its generating set $ A $. In this paper we attempt to find dominating sets in Cayley graphs constructed out of $ Z_{n} $. Actually we find the value of domination number for $ Cay(Z_{n}, A) $ and a minimal dominating set when $ |A| $ is even and further we have proved that $ Cay(Z_{n}, A) $ is excellent. We have also shown that $ Cay(Z_{n}, A) $ is $ 2- $excellent, when $ n = t(|A|+1)+1 $ for some integer $ t, t>0 $.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Ebrahim Ghaderpour ◽  
Dave Witte Morris

Suppose that G is a finite group, such that |G|=27p, where p is prime. We show that if S is any generating set of G, then there is a Hamiltonian cycle in the corresponding Cayley graph Cay (G;S).


2019 ◽  
Vol 18 (12) ◽  
pp. 1950237
Author(s):  
Bartłomiej Pawlik

A diagonal base of a Sylow 2-subgroup [Formula: see text] of symmetric group [Formula: see text] is a minimal generating set of this subgroup consisting of elements with only one nonzero coordinate in the polynomial representation. For different diagonal bases, Cayley graphs over [Formula: see text] may have different girths (i.e. minimal lengths of cycles). In this paper, all possible values of girths of Cayley graphs over [Formula: see text] with diagonal bases are calculated. A criterion for whenever such Cayley graph has girth equal to 4 is presented.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2805-2812
Author(s):  
Lu Lu ◽  
Qiongxiang Huang

Let Zn2 be the elementary abelian 2-group, which can be viewed as the vector space of dimension n over F2. Let {e1,..., en} be the standard basis of Zn2 and ?k = ek +...+ en for some 1 ? k ? n-1. Denote by ?n,k the Cayley graph over Zn2 with generating set Sk = {e1,..., en,?k}, that is, ?n,k = Cay(Zn2,Sk). In this paper, we characterize the automorphism group of ?n,k for 1 ? k ? n-1 and determine all Cayley graphs over Zn2 isomorphic to ?n,k. Furthermore, we prove that for any Cayley graph ? = Cay(Zn2,T), if ? and ?n,k share the same spectrum, then ? ? ?n,k. Note that ?n,1 is known as the so called n-dimensional folded hypercube FQn, and ?n,k is known as the n-dimensional enhanced hypercube Qn,k.


Filomat ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 2079-2086
Author(s):  
Milan Basic ◽  
Aleksandar Ilic

The unitary Cayley graph Xn has the vertex set Zn = {0,1,2,..., n-1} and vertices a and b are adjacent, if and only if gcd(a-b,n) = 1. In this paper, we present some properties of the clique, independence and distance polynomials of the unitary Cayley graphs and generalize some of the results from [W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), #R45]. In addition, using some properties of Laplacian polynomial we determine the number of minimal spanning trees of any unitary Cayley graph.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2012 ◽  
Vol 27 (03) ◽  
pp. 1350022 ◽  
Author(s):  
CHUNXIA YANG ◽  
YING SHEN ◽  
BINGYING XIA

In this paper, using a moving window to scan through every stock price time series over a period from 2 January 2001 to 11 March 2011 and mutual information to measure the statistical interdependence between stock prices, we construct a corresponding weighted network for 501 Shanghai stocks in every given window. Next, we extract its maximal spanning tree and understand the structure variation of Shanghai stock market by analyzing the average path length, the influence of the center node and the p-value for every maximal spanning tree. A further analysis of the structure properties of maximal spanning trees over different periods of Shanghai stock market is carried out. All the obtained results indicate that the periods around 8 August 2005, 17 October 2007 and 25 December 2008 are turning points of Shanghai stock market, at turning points, the topology structure of the maximal spanning tree changes obviously: the degree of separation between nodes increases; the structure becomes looser; the influence of the center node gets smaller, and the degree distribution of the maximal spanning tree is no longer a power-law distribution. Lastly, we give an analysis of the variations of the single-step and multi-step survival ratios for all maximal spanning trees and find that two stocks are closely bonded and hard to be broken in a short term, on the contrary, no pair of stocks remains closely bonded for a long time.


Sign in / Sign up

Export Citation Format

Share Document