scholarly journals Polynomials of unitary Cayley graphs

Filomat ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 2079-2086
Author(s):  
Milan Basic ◽  
Aleksandar Ilic

The unitary Cayley graph Xn has the vertex set Zn = {0,1,2,..., n-1} and vertices a and b are adjacent, if and only if gcd(a-b,n) = 1. In this paper, we present some properties of the clique, independence and distance polynomials of the unitary Cayley graphs and generalize some of the results from [W. Klotz, T. Sander, Some properties of unitary Cayley graphs, Electr. J. Comb. 14 (2007), #R45]. In addition, using some properties of Laplacian polynomial we determine the number of minimal spanning trees of any unitary Cayley graph.

2018 ◽  
Vol 17 (09) ◽  
pp. 1850178 ◽  
Author(s):  
Huadong Su ◽  
Yiqiang Zhou

Let [Formula: see text] be a ring with identity. The unitary Cayley graph of [Formula: see text] is the simple graph with vertex set [Formula: see text], where two distinct vertices [Formula: see text] and [Formula: see text] are linked by an edge if and only if [Formula: see text] is a unit of [Formula: see text]. A graph is said to be planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In this paper, we completely characterize the rings whose unitary Cayley graphs are planar.


10.37236/963 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

The unitary Cayley graph $X_n$ has vertex set $Z_n=\{0,1, \ldots ,n-1\}$. Vertices $a, b$ are adjacent, if gcd$(a-b,n)=1$. For $X_n$ the chromatic number, the clique number, the independence number, the diameter and the vertex connectivity are determined. We decide on the perfectness of $X_n$ and show that all nonzero eigenvalues of $X_n$ are integers dividing the value $\varphi(n)$ of the Euler function.


2018 ◽  
Vol 7 (3) ◽  
pp. 1243 ◽  
Author(s):  
Roshan Philipose ◽  
Sarasija P B

In this paper, we determine the Gutman Index and Harary Index of Unitary Cayley Graphs. The Unitary Cayley Graph Xn is the graph with vertex set  V(Xn) ={u|u∈ Zn} and edge set {uv|gcd(u−v, n) = 1 and u, v ∈ Zn }, where Zn ={0,1,...,n−1}.


2016 ◽  
Vol 59 (3) ◽  
pp. 652-660
Author(s):  
Huadong Su

AbstractThe unitary Cayley graph of a ringR, denoted Γ(R), is the simple graph defined on all elements ofR, and where two verticesxandyare adjacent if and only ifx−yis a unit inR. The largest distance between all pairs of vertices of a graphGis called the diameter ofGand is denoted by diam(G). It is proved that for each integern≥ 1, there exists a ringRsuch that diam(Γ(R)) =n. We also show that diam(Γ(R)) ∊ {1, 2, 3,∞} for a ringRwithR/J(R) self-injective and classify all those rings with diam(Γ(R)) = 1, 2, 3, and ∞, respectively.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


1999 ◽  
Vol 42 (3) ◽  
pp. 611-620
Author(s):  
Steven N. Evans

A sequential construction of a random spanning tree for the Cayley graph of a finitely generated, countably infinite subsemigroup V of a group G is considered. At stage n, the spanning tree T isapproximated by a finite tree Tn rooted at the identity.The approximation Tn+1 is obtained by connecting edges to the points of V that are not already vertices of Tn but can be obtained from vertices of Tn via multiplication by a random walk step taking values in the generating set of V. This construction leads to a compactification of the semigroup V inwhich a sequence of elements of V that is not eventually constant is convergent if the random geodesic through the spanning tree T that joins the identity to the nth element of the sequence converges in distribution as n→∞. The compactification is identified in a number of examples. Also, it is shown that if h(Tn) and #(Tn) denote, respectively, the height and size of the approximating tree Tn, then there are constants 0<ch≤1 and 0≥c# ≤log2 such that limn→∞ n–1 h(Tn)= ch and limn→∞n–1 log# (Tn)= c# almost surely.


2018 ◽  
Vol 17 (06) ◽  
pp. 1850116
Author(s):  
Saadoun Mahmoudi ◽  
Shahram Mehry ◽  
Reza Safakish

Let [Formula: see text] be a subset of a commutative graded ring [Formula: see text]. The Cayley graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The Cayley sum graph [Formula: see text] is a graph whose vertex set is [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. Let [Formula: see text] be the set of homogeneous elements and [Formula: see text] be the set of zero-divisors of [Formula: see text]. In this paper, we study [Formula: see text] (total graph) and [Formula: see text]. In particular, if [Formula: see text] is an Artinian graded ring, we show that [Formula: see text] is isomorphic to a Hamming graph and conversely any Hamming graph is isomorphic to a subgraph of [Formula: see text] for some finite graded ring [Formula: see text].


10.37236/262 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
H. N. Ramaswamy ◽  
C. R. Veena

In this note we obtain the energy of unitary Cayley graph $X_{n}$ which extends a result of R. Balakrishnan for power of a prime and also determine when they are hyperenergetic. We also prove that ${E(X_{n})\over 2(n-1)}\geq{2^{k}\over 4k}$, where $k$ is the number of distinct prime divisors of $n$. Thus the ratio ${E(X_{n})\over 2(n-1)}$, measuring the degree of hyperenergeticity of $X_{n}$, grows exponentially with $k$.


2021 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Reza Jahani-Nezhad ◽  
Ali Bahrami

Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), the unit graph and the unitary Cayley graph of \({E}_{n}\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_{n})\) and \(G_{E_{n}}\) are Hamiltonian.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


Sign in / Sign up

Export Citation Format

Share Document