scholarly journals Zeros and Periodicity of Functions of Infinite Matrices

1959 ◽  
Vol 11 (4) ◽  
pp. 225-229
Author(s):  
Shafik Asaad Ibrahim

Certain functions of infinite matrices are known to exist.† This gives rise to the following questions:1. Whether the power series of matriceshas a zero in the field ‡ of infinite matrices, and2. If f(A) exists for a certain infinite matrix A, is there an infinite matrix B such thatIn other words, is there a matrix period for f(A)?In this paper theorems concerning zeros and periodicity of functions of semi block infinite matrices § (defined below) are established.

1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


1940 ◽  
Vol 5 (3) ◽  
pp. 110-112 ◽  
Author(s):  
J. C. C. McKinsey

In this note I show, by means of an infinite matrix M, that the number of irreducible modalities in Lewis's system S2 is infinite. The result is of some interest in view of the fact that Parry has recently shown that there are but a finite number of modalities in the system S2 (which is the next stronger system than S2 discussed by Lewis).I begin by introducing a function θ which is defined over the class of sets of signed integers, and which assumes sets of signed integers as values. If A is any set of signed integers, then θ(A) is the set of all signed integers whose immediate predecessors are in A; i.e., , so that n ϵ θ(A) is true if and only if n − 1 ϵ A is true.Thus, for example, θ({−10, −1, 0, 3, 14}) = {−9, 0, 1, 4, 15}. In particular we notice that θ(V) = V and θ(Λ) = Λ, where V is the set of all signed integers, and Λ is the empty set of signed integers.It is clear that, if A and B are sets of signed integers, then θ(A+B) = θ(A)+θ(B).It is also easily proved that, for any set A of signed integers we have . For, if n is any signed integer, then


1982 ◽  
Vol 34 (4) ◽  
pp. 952-960 ◽  
Author(s):  
W. T. Tutte

This paper is a continuation of the Waterloo Research Report CORR 81-12, (see [1]) referred to in what follows as I. That Report is entitled “Chromatic Solutions”. It is largely concerned with a power series h in a variable z2, in which the coefficients are polynomials in a “colour number” λ. By definition the coefficient of z2r, where r > 0, is the sum of the chromatic polynomials of the rooted planar triangulations of 2r faces. (Multiple joins are allowed in these triangulations.) Thus for a positive integral λ the coefficient is the number of λ-coloured rooted planar triangulations of 2r faces. The use of the symbol z2 instead of a simple letter t is for the sake of continuity with earlier papers.In I we consider the case(1)where n is an integer exceeding 4.


1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.


1990 ◽  
Vol 33 (3) ◽  
pp. 483-490 ◽  
Author(s):  
I. O. York

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal power series with coefficients in R, of the formand the group operation being substitution. The results obtained give the exponent of the quotient groups Gn(R) of this group, n∈ℕ.


1982 ◽  
Vol 34 (3) ◽  
pp. 741-758 ◽  
Author(s):  
W. T. Tutte

Early in the Seventies I sought the number of rooted λ-coloured triangulations of the sphere with 2p faces. In these triangulations double joins, but not loops, were permitted. The investigation soon took the form of a discussion of a certain formal power series l(y, z, λ) in two independent variables y and z.The basic theory of l is set out in [1]. There l is defined as the coefficient of x2 in a more complicated power series g(x, y, z, λ). But the definition is equivalent to the following formula.1Here T denotes a general rooted triangulation. n(T) is the valency of its root-vertex, and 2p(T) is the number of its faces. P(T, λ) is the chromatic polynomial of the graph of T.


1982 ◽  
Vol 23 (1) ◽  
pp. 41-52
Author(s):  
Daniel J. Troy

Given a polynomially bounded multisequence {fm}, where m = (m1, …, mk) ∈ ℤk, we will consider 2k power series in exp(iz1), …, exp(izk), each representing a holomorphic function within its domain of convergence. We will consider this same multisequence as a linear functional on a class of functions defined on the k-dimensional torus by a Fourier series, , with the proper convergence criteria. We shall discuss the relationships that exist between the linear functional properties of the multisequence and the analytic continuation of the holomorphic functions. With this approach we show that a necessary and sufficient condition that the multisequence be given by a polynomial is that each of the power series represents, up to a unit factor, the same function that is entire in the variables


1982 ◽  
Vol 25 (2) ◽  
pp. 183-207 ◽  
Author(s):  
W. Balser

Let a meromorphic differential equationbe given, where r is an integer, and the series converges for |z| sufficiently large. Then it is well known that (0.1) is formally satisfied by an expressionwhere F( z) is a formal power series in z–1 times an integer power of z, and F( z) has an inverse of the same kind, L is a constant matrix, andis a diagonal matrix of polynomials qj( z) in a root of z, 1≦ j≦ n. If, for example, all the polynomials in Q( z) are equal, then F( z) can be seen to be a convergent series (see Section 1), whereas if not, then generally the coefficients in F( z) grow so rapidly that F( z) diverges for every (finite) z.


Sign in / Sign up

Export Citation Format

Share Document