scholarly journals ON THE COALGEBRAIC RING AND BOUSFIELD–KAN SPECTRAL SEQUENCE FOR A LANDWEBER EXACT SPECTRUM

2004 ◽  
Vol 47 (3) ◽  
pp. 513-532 ◽  
Author(s):  
Martin Bendersky ◽  
John R. Hunton

AbstractWe construct a Bousfield–Kan (unstable Adams) spectral sequence based on an arbitrary (and not necessarily connective) ring spectrum $E$ with unit and which is related to the homotopy groups of a certain unstable $E$ completion $X_E^{\wedge}$ of a space $X$. For $E$ an $\mathbb{S}$-algebra this completion agrees with that of the first author and Thompson. We also establish in detail the Hopf algebra structure of the unstable cooperations (the coalgebraic module) $E_*(\underline{E}_*)$ for an arbitrary Landweber exact spectrum $E$, extending work of the second author with Hopkins and with Turner and giving basis-free descriptions of the modules of primitives and indecomposables. Taken together, these results enable us to give a simple description of the $E_2$-page of the $E$-theory Bousfield–Kan spectral sequence when $E$ is any Landweber exact ring spectrum with unit. This extends work of the first author and others and gives a tractable unstable Adams spectral sequence based on a $v_n$-periodic theory for all $n$.AMS 2000 Mathematics subject classification: Primary 55P60; 55Q51; 55S25; 55T15. Secondary 55P47

Author(s):  
Hans-Joachim Baues ◽  
Mamuka Jibladze

AbstractWe describe the dualization of the algebra of secondary cohomology operations in terms of generators extending the Milnor dual of the Steenrod algebra. In this way we obtain explicit formulæ for the computation of the E3-term of the Adams spectral sequence converging to the stable homotopy groups of spheres.


1987 ◽  
Vol 101 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Wen-Hsiung Lin

The classical Adams spectral sequence [1] has been an important tool in the computation of the stable homotopy groups of spheres . In this paper we make another contribution to this computation.


1987 ◽  
Vol 101 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alan Robinson

We introduce a new construction in stable homotopy theory. If F and G are module spectra over a ring spectrum E, there is no well-known spectrum of E-module homomorphisms from F to G. Such a construction would not be homotopy invariant, and therefore would not serve much purpose. We show that, provided the rings and modules have A∞ structures, there is a spectrum RHomE(F, G) of derived module homomorphisms which has very pleasant properties. It is homotopy invariant, exact in each variable, and its homotopy groups form the abutment of a hypercohomology-type spectral sequence.


1978 ◽  
Vol 30 (01) ◽  
pp. 45-53 ◽  
Author(s):  
Donald M. Davis

The Brown-Peterson spectrum BP has been used recently to establish some new information about the stable homotopy groups of spheres [9; 11]. The best results have been achieved by using the associated homology theory BP* ( ), the Hopf algebra BP*(BP), and the Adams-Novikov spectral sequence


1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


Sign in / Sign up

Export Citation Format

Share Document