Factoriality and Type Classification of k-Graph von Neumann Algebras

2016 ◽  
Vol 60 (2) ◽  
pp. 499-518 ◽  
Author(s):  
Dilian Yang

AbstractLet be a single vertex k-graph and let be the von Neumann algebra induced from the Gelfand–Naimark–Segal (GNS) representation of a distinguished state ω of its k-graph C*-algebra . In this paper we prove the factoriality of , and furthermore determine its type when either has the little pullback property, or the intrinsic group of has rank 0. The key step to achieving this is to show that the fixed-point algebra of the modular action corresponding to ω has a unique tracial state.

Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


1971 ◽  
Vol 23 (4) ◽  
pp. 598-607 ◽  
Author(s):  
Ole A. Nielsen

The fact that any von Neumann algebra on a separable Hilbert space has an essentially unique direct integral decomposition into factors means that there is a global as well as a local aspect to any partial classification of von Neumann algebras. More precisely, suppose that J is a statement about von Neumann algebras which is either true or false for any given von Neumann algebra. Then a von Neumann algebra is said to satisfy J globally if it satisfies J, and to satsify J locally if almost all the factors appearing in some (and hence in any) central decomposition of it satisfy J . In a recent paper [3], H. Araki and E. J. Woods introduced the notion of the asymptotic ratio set of a factor, and by means of this they made remarkable progress in the classification of factors.


1995 ◽  
Vol 07 (04) ◽  
pp. 599-630 ◽  
Author(s):  
FLORIAN NILL ◽  
HANS-WERNER WIESBROCK

Given an irreducible inclusion of infinite von-Neumann-algebras [Formula: see text] together with a conditional expectation [Formula: see text] such that the inclusion has depth 2, we show quite explicitly how [Formula: see text] can be viewed as the fixed-point algebra of [Formula: see text] w.r.t. an outer action of a compact Kac algebra acting on [Formula: see text]. This gives an alternative proof, under this special setting of a more general result of M. Enock and R. Nest [6], see also S. Yamagami [28].


2016 ◽  
Vol 15 (06) ◽  
pp. 1650079 ◽  
Author(s):  
Fatemeh Akhtari ◽  
Rasoul Nasr-Isfahani

For a Hopf von Neumann algebra [Formula: see text], we give a fixed point characterization of Voiculescu amenability of [Formula: see text] in terms of modules over [Formula: see text]. As a consequence, we present some descriptions for amenability of locally compact groups in terms of certain associated Hopf von Neumann algebras. We finally apply this result to some modules of continuous functions on a multiplicative subsemigroup of [Formula: see text].


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1981 ◽  
Vol 24 (1) ◽  
pp. 87-90
Author(s):  
Sze-Kai Tsui

AbstractIf is a von Neumann algebra that thas no nonzero finite discrete central projection, then there is no nontrivial compact derivation of into itself.


Author(s):  
Martijn Caspers

AbstractConsider the free orthogonal quantum groups $$O_N^+(F)$$ O N + ( F ) and free unitary quantum groups $$U_N^+(F)$$ U N + ( F ) with $$N \ge 3$$ N ≥ 3 . In the case $$F = \text {id}_N$$ F = id N it was proved both by Isono and Fima-Vergnioux that the associated finite von Neumann algebra $$L_\infty (O_N^+)$$ L ∞ ( O N + ) is strongly solid. Moreover, Isono obtains strong solidity also for $$L_\infty (U_N^+)$$ L ∞ ( U N + ) . In this paper we prove for general $$F \in GL_N(\mathbb {C})$$ F ∈ G L N ( C ) that the von Neumann algebras $$L_\infty (O_N^+(F))$$ L ∞ ( O N + ( F ) ) and $$L_\infty (U_N^+(F))$$ L ∞ ( U N + ( F ) ) are strongly solid. A crucial part in our proof is the study of coarse properties of gradient bimodules associated with Dirichlet forms on these algebras and constructions of derivations due to Cipriani–Sauvageot.


Author(s):  
Colin E. Sutherland

AbstractWe analyse the structure of a regular extension ℳ ⋊ γ, υQ of a von Neumann algebra ℳ by an action (modulo inner automorphisms) γ of a discrete group Q, and a nonabelian 2-cycle υ for γ, under the assumption that the “action” γ of Q is cocycle conjugate to an “action”, α which leaves globally invariant a cartan subalgebra of ℳ. we show that ℳ ⋊ γ, υQ is isomorphic with the algebra of the left regular projective representation of a certain discrete, non-principal groupoid ℜ V Q determined by the action of Q on the given cartan subalgebrs, where ℜ is the Takesaki relation associated to the pair (ℳ, ) we apply this description to give a decomposition of the regular representation of a group G into irreducibles, where G is a split extension of a type I group K by an abelian group Q, and work out the details of the author's earlier abstract plancherel theorem in the case when K is abelian.


Sign in / Sign up

Export Citation Format

Share Document