GAS EXCHANGE, GROWTH, YIELD AND BEVERAGE QUALITY OF COFFEA ARABICA CULTIVARS GRAFTED ON TO C. CANEPHORA AND C. CONGENSIS

2001 ◽  
Vol 37 (2) ◽  
pp. 241-252 ◽  
Author(s):  
J. I. FAHL ◽  
M. L. C. CARELLI ◽  
H. C. MENEZES ◽  
P. B. GALLO ◽  
P. C. O. TRIVELIN

Gas exchange, leaf carbon isotope discrimination, growth, yield and beverage quality were evaluated for two Coffea arabica cultivars (Catuai and Mundo Novo), grafted on to C. canephora and C. congensis progenies growing in open fields. During the years 1994 to 1997, grafting resulted in an average increase in bean yield of 151 and 89% for Catuai and Mundo Novo respectively. As analysed by sensory analyses and by the ratio between the mono-isomers and di-isomers of caffeoylquinic acid, beverage quality of the C. arabica was not altered by grafting. Shoot growth was significantly greater in grafted plants, showing an increase of 52% in total leaf area compared with the non-grafted plants. Under conditions of water excess in the soil there was little difference in the transpiration and stomatal conductance rates between the grafted and non-grafted plants, but the net photosynthesis was higher in grafted plants. With an accentuated water deficit in the soil in the dry period, the grafted plants showed significantly higher transpiration and stomatal conductance rates than the non-grafted plants, and similar values to those of C. canephora. Carbon isotope discrimination was greater in the grafted plants, suggesting greater root hydraulic conductance. The results suggest that the better performance of the grafted plants during the dry period was due to the greater capacity of the root system of C. canephora to provide water to the shoot thereby maintaining greater gas exchange in the leaves and consequently a greater carbon gain.

1994 ◽  
Vol 21 (2) ◽  
pp. 207 ◽  
Author(s):  
MV Gutierrez ◽  
FC Meinzer

In evergreen species, leaf carbon isotope discrimination (Δ) integrates phenological rhythms in gas exchange as well as seasonal changes in environmental conditions. However, few reports on long term variations in Δ of woody plants are available. We measured Δ, gas exchange, nitrogen content, and photosynthetic nitrogen-use efficiency (PNUE) in coffee hedgerows at different stages of canopy development encompassing a range of leaf area index (LAI) from 0.7 to 7.5. Assimilation was highest in sun leaves, but stomatal conductance was highest in shaded leaves. This resulted in a high correlation between assimilation and stomatal conductance in sun, but not in shaded leaves. Δ was about 20 lower in sun than in shaded leaves, and varied by 2.30 among leaves at different positions along two-year- old branches. These differences in Δ were the result of changes in carbon isotope composition that occurred in mature, fully expanded leaves as they became shaded during subsequent canopy growth. Results from a mass balance model based on leaf gas exchange characteristics and measured foliar Δ values suggested that about 50% of the carbon originally fixed during leaf development in the sun may have subsequently been turned over in the shade. Δ of sun leaves from the upper canopy decreased by about 20 with increasing LAI, indicating that intrinsic water-use efficiency (WUE) of this canopy layer increased during canopy development. In contrast, instantaneous WUE, estimated as assimilation divided by canopy transpiration obtained from sap flow measurements, seemed to decrease with increasing LAI. PNUE of upper canopy sun leaves decreased with increasing LAI, suggesting a physiological compromise between WUE and PNUE mediated by stomatal conductance, which also decreased with increasing LAI. A strong negative correlation obtained between leaf Δ and N content was consistent with a trade-off between intrinsic water- and N-use efficiency.


2016 ◽  
Vol 13 (18) ◽  
pp. 5183-5204 ◽  
Author(s):  
Brett Raczka ◽  
Henrique F. Duarte ◽  
Charles D. Koven ◽  
Daniel Ricciuto ◽  
Peter E. Thornton ◽  
...  

Abstract. Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δcanopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An − gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An − gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE) since 1850 which is counter to established relationships between discrimination and WUE. The isotope observations used here to constrain CLM suggest (1) the model overestimated stomatal conductance and (2) the default CLM approach to representing nitrogen limitation (partially coupled model) was not capable of reproducing observed trends in discrimination. These findings demonstrate that isotope observations can provide important information related to stomatal function driven by environmental stress from VPD and nitrogen limitation. Future versions of CLM that incorporate carbon isotope discrimination are likely to benefit from explicit inclusion of mesophyll conductance.


HortScience ◽  
1991 ◽  
Vol 26 (11) ◽  
pp. 1413-1414 ◽  
Author(s):  
F.C. Meinzer ◽  
J.L. Ingamells ◽  
C. Crisosto

Foliar C isotope discrimination (Δ) and yield of green coffee (Coffea arabica L.) beans were evaluated for seedling populations from 14 diverse coffee cultivars growing in Hawaii. A was negatively correlated with yield of green coffee beans. The 2% variation in A observed in leaves sampled about 2 months after completion of the first harvest corresponded to a 3-fold variation in yield. Substantial variation in A exists among coffee cultivars, and foliar A analyses show promise as a means of selecting superior genotypes of long-lived woody crops.


Sign in / Sign up

Export Citation Format

Share Document