scholarly journals Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species

2011 ◽  
Vol 93 (5) ◽  
pp. 343-349 ◽  
Author(s):  
J. W. VAN OOIJEN

SummaryThe fast multipoint maximum likelihood mapping algorithm for crosses between inbred lines, introduced by Jansen et al. (2001), is extended for mapping in a full-sib family of an outbreeding species. The method accommodates different segregation types of markers and differences in recombination between parents. The two separate parental multipoint maximum likelihood maps are joined into an integrated map by averaging lengths over anchored segments and by interpolating or extrapolating for markers segregating in one parent only. The method is illustrated with simulated data. The method will enable a more accurate estimation of maps in outbreeding species than current methods.

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Arianna I. Renzini ◽  
Joseph D. Romano ◽  
Carlo R. Contaldi ◽  
Neil J. Cornish

Author(s):  
Valentin Raileanu ◽  

The article briefly describes the history and fields of application of the theory of extreme values, including climatology. The data format, the Generalized Extreme Value (GEV) probability distributions with Bock Maxima, the Generalized Pareto (GP) distributions with Point of Threshold (POT) and the analysis methods are presented. Estimating the distribution parameters is done using the Maximum Likelihood Estimation (MLE) method. Free R software installation, the minimum set of required commands and the GUI in2extRemes graphical package are described. As an example, the results of the GEV analysis of a simulated data set in in2extRemes are presented.


2019 ◽  
Author(s):  
Benoit Morel ◽  
Alexey M. Kozlov ◽  
Alexandros Stamatakis ◽  
Gergely J. Szöllősi

AbstractInferring phylogenetic trees for individual homologous gene families is difficult because alignments are often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes. To overcome these challenges species tree-aware methods also leverage information from a putative species tree. However, only few methods are available that implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these methods often require expensive data pre-processing (e.g., computing bootstrap trees), and rely on approximations and heuristics that limit the degree of tree space exploration. Here we present GeneRax, the first maximum likelihood species tree-aware phylogenetic inference software. It simultaneously accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer, and loss relying on established maximum likelihood optimization algorithms. GeneRax can infer rooted phylogenetic trees for multiple gene families, directly from the per-gene sequence alignments and a rooted, yet undated, species tree. We show that compared to competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in terms of relative Robinson-Foulds distance. On empirical datasets, GeneRax is the fastest among all tested methods when starting from aligned sequences, and it infers trees with the highest likelihood score, based on our model. GeneRax completed tree inferences and reconciliations for 1099 Cyanobacteria families in eight minutes on 512 CPU cores. Thus, its parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax.


2020 ◽  
Vol 37 (9) ◽  
pp. 2763-2774 ◽  
Author(s):  
Benoit Morel ◽  
Alexey M Kozlov ◽  
Alexandros Stamatakis ◽  
Gergely J Szöllősi

Abstract Inferring phylogenetic trees for individual homologous gene families is difficult because alignments are often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes. To overcome these challenges, species-tree-aware methods also leverage information from a putative species tree. However, only few methods are available that implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these methods often require expensive data preprocessing (e.g., computing bootstrap trees) and rely on approximations and heuristics that limit the degree of tree space exploration. Here, we present GeneRax, the first maximum likelihood species-tree-aware phylogenetic inference software. It simultaneously accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer, and loss relying on established maximum likelihood optimization algorithms. GeneRax can infer rooted phylogenetic trees for multiple gene families, directly from the per-gene sequence alignments and a rooted, yet undated, species tree. We show that compared with competing tools, on simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in terms of relative Robinson–Foulds distance. On empirical data sets, GeneRax is the fastest among all tested methods when starting from aligned sequences, and it infers trees with the highest likelihood score, based on our model. GeneRax completed tree inferences and reconciliations for 1,099 Cyanobacteria families in 8 min on 512 CPU cores. Thus, its parallelization scheme enables large-scale analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax (last accessed June 17, 2020).  


2012 ◽  
Vol 02 (02) ◽  
pp. 1250008 ◽  
Author(s):  
Gregory R. Duffee ◽  
Richard H. Stanton

We study the finite-sample properties of some of the standard techniques used to estimate modern term structure models. For sample sizes and models similar to those used in most empirical work, we reach three surprising conclusions. First, while maximum likelihood works well for simple models, it produces strongly biased parameter estimates when the model includes a flexible specification of the dynamics of interest rate risk. Second, despite having the same asymptotic efficiency as maximum likelihood, the small-sample performance of Efficient Method of Moments (a commonly used method for estimating complicated models) is unacceptable even in the simplest term structure settings. Third, the linearized Kalman filter is a tractable and reasonably accurate estimation technique, which we recommend in settings where maximum likelihood is impractical.


Sign in / Sign up

Export Citation Format

Share Document