The M-Regular Graph of a Commutative Ring

2015 ◽  
Vol 65 (1) ◽  
pp. 1-12
Author(s):  
M. J. Nikmehr ◽  
F. Heydari

AbstractLet R be a commutative ring and M be an R-module, and let Z(M) be the set of all zero-divisors on M. In 2008, D. F. Anderson and A. Badawi introduced the regular graph of R. In this paper, we generalize the regular graph of R to the M-regular graph of R, denoted by M-Reg(Γ(R)). It is the undirected graph with all M-regular elements of R as vertices, and two distinct vertices x and y are adjacent if and only if x+y ∈ Z(M). The basic properties and possible structures of M-Reg(Γ(R)) are studied. We determine the girth of the M-regular graph of R. Also, we provide some lower bounds for the independence number and the clique number of M- Reg(Γ(R)). Among other results, we prove that for every Noetherian ring R and every finitely generated module M over R, if 2 ∉ Z(M) and the independence number of M-Reg(Γ(R)) is finite, then R is finite.

2013 ◽  
Vol 89 (1) ◽  
pp. 132-140 ◽  
Author(s):  
S. AKBARI ◽  
F. HEYDARI

AbstractLet $R$ be a ring and $Z(R)$ be the set of all zero-divisors of $R$. The total graph of $R$, denoted by $T(\Gamma (R))$ is a graph with all elements of $R$ as vertices, and two distinct vertices $x, y\in R$ are adjacent if and only if $x+ y\in Z(R)$. Let the regular graph of $R$, $\mathrm{Reg} (\Gamma (R))$, be the induced subgraph of $T(\Gamma (R))$ on the regular elements of $R$. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph of a commutative ring are contained in the set $\{ 3, 4, \infty \} $. In this paper, we extend this result to an arbitrary ring (not necessarily commutative). We also prove that if $R$ is a reduced left Noetherian ring and $2\not\in Z(R)$, then the chromatic number and the clique number of $\mathrm{Reg} (\Gamma (R))$ are the same and they are ${2}^{r} $, where $r$ is the number of minimal prime ideals of $R$. Among other results, we show that if $R$ is a semiprime left Noetherian ring and $\mathrm{Reg} (R)$ is finite, then $R$ is finite.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350035
Author(s):  
MOJGAN AFKHAMI ◽  
KAZEM KHASHYARMANESH

Let R be a commutative ring. The total graph of R, denoted by T(Γ(R)), is a graph with all elements of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and only if x + y ∈ Z(R), where Z(R) denotes the set of zero-divisors of R. In this paper, we examine the preservation of the diameter, girth and completeness of T(Γ(R)) under extension to polynomial rings and rings of fractions. We also study the chromatic index, clique number and independence number of T(Γ(R)).


2011 ◽  
Vol 10 (04) ◽  
pp. 741-753 ◽  
Author(s):  
M. BEHBOODI ◽  
Z. RAKEEI

In this paper we continue our study of annihilating-ideal graph of commutative rings, that was introduced in (The annihilating-ideal graph of commutative rings I, to appear in J. Algebra Appl.). Let R be a commutative ring with 𝔸(R) be its set of ideals with nonzero annihilator and Z(R) its set of zero divisors. The annihilating-ideal graph of R is defined as the (undirected) graph 𝔸𝔾(R) that its vertices are 𝔸(R)* = 𝔸(R)\{(0)} in which for every distinct vertices I and J, I — J is an edge if and only if IJ = (0). First, we study the diameter of 𝔸𝔾(R). A complete characterization for the possible diameter is given exclusively in terms of the ideals of R when either R is a Noetherian ring or Z(R) is not an ideal of R. Next, we study coloring of annihilating-ideal graphs. Among other results, we characterize when either χ(𝔸𝔾(R)) ≤ 2 or R is reduced and χ(𝔸𝔾(R)) ≤ ∞. Also it is shown that for each reduced ring R, χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)). Moreover, if χ(𝔸𝔾(R)) is finite, then R has a finite number of minimal primes, and if n is this number, then χ(𝔸𝔾(R)) = cl (𝔸𝔾(R)) = n. Finally, we show that for a Noetherian ring R, cl (𝔸𝔾(R)) is finite if and only if for every ideal I of R with I2 = (0), I has finite number of R-submodules.


2015 ◽  
Vol 07 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Alpesh M. Dhorajia

Let R be a commutative ring and Z(R) be the set of all zero-divisors of R. The total graph of R, denoted by T Γ(R), is the (undirected) graph with vertices set R. For any two distinct elements x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we obtain certain fundamental properties of the total graph of ℤn × ℤm, where n and m are positive integers. We determine the clique number and independent number of the total graph T Γ(ℤn × ℤm).


1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250151 ◽  
Author(s):  
M. BAZIAR ◽  
E. MOMTAHAN ◽  
S. SAFAEEYAN

Let M be an R-module. We associate an undirected graph Γ(M) to M in which nonzero elements x and y of M are adjacent provided that xf(y) = 0 or yg(x) = 0 for some nonzero R-homomorphisms f, g ∈ Hom (M, R). We observe that over a commutative ring R, Γ(M) is connected and diam (Γ(M)) ≤ 3. Moreover, if Γ(M) contains a cycle, then gr (Γ(M)) ≤ 4. Furthermore if ∣Γ(M)∣ ≥ 1, then Γ(M) is finite if and only if M is finite. Also if Γ(M) = ∅, then any nonzero f ∈ Hom (M, R) is monic (the converse is true if R is a domain). For a nonfinitely generated projective module P we observe that Γ(P) is a complete graph. We prove that for a domain R the chromatic number and the clique number of Γ(M) are equal. When R is self-injective, we will also observe that the above adjacency defines a covariant functor between a subcategory of R-MOD and the Category of graphs.


2012 ◽  
Vol 11 (04) ◽  
pp. 1250074 ◽  
Author(s):  
DAVID F. ANDERSON ◽  
AYMAN BADAWI

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. The total graph of R is the (undirected) graph T(Γ(R)) with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we study the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T(Γ(R)), with vertices Z(R)\{0} and R\{0}, respectively. We determine when Z0(Γ(R)) and T0(Γ(R)) are connected and compute their diameter and girth. We also investigate zero-divisor paths and regular paths in T0(Γ(R)).


Sign in / Sign up

Export Citation Format

Share Document