scholarly journals Essential normal and conjugate extensions of inverse semigroups

1982 ◽  
Vol 23 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Francis Pastijn

In the following we use the notation and terminology of [6] and [7]. If S is an inverse semigroup, then Es denotes the semilattice of idempotents of S. If a is any element of the inverse semigroup, then a−1 denotes the inverse of a in S. An inverse subsemigroup S of an inverse semigroup S′ is self-conjugate in S′ if for all x ∈ S′,x−1Sx ⊆ S; if this is the case, S′ is called a conjugate extension of S. An inverse subsemigroup S of S′ is said to be a full inverse subsemigroup of S′ if Es = Es′. If S is a full self-conjugate inverse subsemigroup of the inverse semigroup S′, then S is called a normal inverse subsemigroup of S′, or, S′ is called a normal extension of S.

2008 ◽  
Vol 45 (3) ◽  
pp. 395-409 ◽  
Author(s):  
Francis Pastijn ◽  
Luís Oliveira

The translational hull of a locally inverse semigroup has a largest locally inverse subsemigroup containing the inner part. A construction is given for ideal extensions within the class of all locally inverse semigroups.


Author(s):  
John M. Howie ◽  
M. Paula O. Marques-Smith

SynopsisLet X be a set with infinite cardinality m and let B be the Baer-Levi semigroup, consisting of all one-one mappings a:X→X for which ∣X/Xα∣ = m. Let Km=<B 1B>, the inverse subsemigroup of the symmetric inverse semigroup ℐ(X) generated by all products β−γ, with β,γ∈B. Then Km = <N2>, where N2 is the subset of ℐ(X) consisting of all nilpotent elements of index 2. Moreover, Km has 2-nilpotent-depth 3, in the sense that Let Pm be the ideal {α∈Km: ∣dom α∣<m} in Km and let Lm be the Rees quotient Km/Pm. Then Lm is a 0-bisimple, 2-nilpotent-generated inverse semigroup with 2-nilpotent-depth 3. The minimum non-trivial homomorphic image of Lm also has these properties and is congruence-free.


1995 ◽  
Vol 05 (03) ◽  
pp. 317-342 ◽  
Author(s):  
BERND BILLHARDT

Let V be a variety of regular orthogroups, i.e. completely regular orthodox semigroups whose band of idempotents is regular. Let S be an orthodox semigroup which is a (normal) extension of an orthogroup K from V by an inverse semigroup G, that is, there is a congruence ρ on S such that the semigroup ker ρ of all idempotent related elements of S is isomorphic to K and S/ρ≅G. It is shown that S can be embedded into an orthodox subsemigroup T of a double semidirect product A**G where A belongs to V. Moreover T itself can be chosen to be an extension of a member from V by G. If in addition ρ is a group congruence we obtain a recent result due to M.B. Szendrei [16] which says that each orthodox semigroup which is an extension of a regular orthogroup K by a group G can be embedded into a semidirect product of an orthogroup K′ by G where K′ belongs to the variety of orthogroups generated by K.


1981 ◽  
Vol 31 (4) ◽  
pp. 415-420
Author(s):  
F. Pastijn

AbstractWe show that every inverse semigroup is an idempotent separating homomorphic image of a convex inverse subsemigroup of a P-semigroup P(G, L, L), where G acts transitively on L. This division theorem for inverse semigroups can be applied to obtain a division theorem for pseudo-inverse semigroups.


1977 ◽  
Vol 23 (1) ◽  
pp. 28-41 ◽  
Author(s):  
N. R. Reilly

AbstractThe inverse semigroup TE of isomorphisms of principal ideals of E onto principal ideals of E, where E is a semilattice, has been introduced and studied by Munn (1966, 1970). He showed that, for any inverse semigroup S with semilattice E, there is a representation of S by an inverse subsemigroup of TE. The Munn representation, however, is not always faithful. In this paper, the possibility is considered of enlarging the carrier set E of the Munn representation in order to obtain a faithful representation of S as an inverse subsemigroup of a structure resembling TE in many ways. A structure X is obtained by replacing each element of E by a set. Then X = ∪{Xe: e ∈ E}, where Xe, denotes some set, has a natural pre-order relation ≤ (where x ≤ y if and only if x ∈ Xe, y ∈ Xf and e ≦ f ) inherited from E such that if T = {(x, y)∈X × X;x ≤ y and y ≤ x} then X/T is isomorphic to E. Such a set X is referred to as a pre-semilattice with semilattice E. If Tx denotes the set of all isomorphisms of principal ideals of X onto principal ideals of X then Tx is an inverse semigroup. Basic properties of Tx are considered. It is shown that when X is locally uniform, that is, when |Xe| = |Xf|, for all e, f ∈ E, Tx may be described as a wreath product of a permutation group with TE.The set s itself is a presemilattice with semilattice E with respect to the pre-order ≤ defined by a ≤ b if and only if a−1a ≦ b−1b. It is then shown that the Vagner-Preston representation embeds S as a full inverse subsemigroup of Ts. As an application of these concepts the following result is established. Let R and S be inverse semigroups and let θ1(θ2) be an isomorphism of a semilattice E onto the semilattice of R(S). Then there exists a locally uniform presemilattice W and embeddings ϕ1, ϕ2 of R and S, respectively, as full inverse subsemigroups of Tw such that (1) θ1ϕ1 = θ2ϕ2 and (2) (eθ1ϕ1, eθ2ϕ2) ∈ if and only if Ee is isomorphic to Ef.


1973 ◽  
Vol 9 (3) ◽  
pp. 479-480 ◽  
Author(s):  
N.R. Reilly

In [1], Theorem 2.2, a necessary and sufficient condition is given for a subset of an inverse semigroup to generate a free inverse subsemigroup. However one very obvious further condition is omitted. The result should read as follows.


2014 ◽  
Vol 57 (3) ◽  
pp. 621-630
Author(s):  
Mario Petrich

AbstractAn inverse semigroup S is combinatorially factorizable if S = TG where T is a combinatorial (i.e., 𝓗 is the equality relation) inverse subsemigroup of S and G is a subgroup of S. This concept was introduced and studied byMills, especially in the case when S is cryptic (i.e., 𝓗 is a congruence on S). Her approach is mainly analytical considering subsemigroups of a cryptic inverse semigroup.We start with a combinatorial inverse monoid and a factorizable Clifford monoid and from an action of the former on the latter construct the semigroups in the title. As a special case, we consider semigroups that are direct products of a combinatorial inverse monoid and a group.


2016 ◽  
Vol 94 (3) ◽  
pp. 457-463 ◽  
Author(s):  
PETER R. JONES

An algebra has the Howson property if the intersection of any two finitely generated subalgebras is again finitely generated. A simple necessary and sufficient condition is given for the Howson property to hold on an inverse semigroup with finitely many idempotents. In addition, it is shown that any monogenic inverse semigroup has the Howson property.


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2001 ◽  
Vol 44 (3) ◽  
pp. 549-569 ◽  
Author(s):  
Benjamin Steinberg

AbstractAdapting the theory of the derived category to ordered groupoids, we prove that every ordered functor (and thus every inverse and regular semigroup homomorphism) factors as an enlargement followed by an ordered fibration. As an application, we obtain Lawson’s version of Ehresmann’s Maximum Enlargement Theorem, from which can be deduced the classical theory of idempotent-pure inverse semigroup homomorphisms and $E$-unitary inverse semigroups.AMS 2000 Mathematics subject classification: Primary 20M18; 20L05; 20M17


Sign in / Sign up

Export Citation Format

Share Document