scholarly journals ON THE CAPABILITY OF FINITELY GENERATED NON-TORSION GROUPS OF NILPOTENCY CLASS 2

2011 ◽  
Vol 53 (2) ◽  
pp. 411-417 ◽  
Author(s):  
LUISE-CHARLOTTE KAPPE ◽  
NOR MUHAINIAH MOHD ALI ◽  
NOR HANIZA SARMIN

AbstractA group is called capable if it is a central factor group. In this paper, we establish a necessary condition for a finitely generated non-torsion group of nilpotency class 2 to be capable. Using the classification of two-generator non-torsion groups of nilpotency class 2, we determine which of them are capable and which are not and give a necessary and sufficient condition for a two-generator non-torsion group of class 2 to be capable in terms of the torsion-free rank of its factor commutator group.

1996 ◽  
Vol 38 (3) ◽  
pp. 309-320 ◽  
Author(s):  
Anatolii V. Tushev

Throughout kwill denote a field. If a group Γ acts on aset A we say an element is Γ-orbital if its orbit is finite and write ΔΓ(A) for the subset of such elements. Let I be anideal of a group algebra kA; we denote by I+ the normal subgrou(I+1)∩A of A. A subgroup B of an abelian torsion-free group A is said to be dense in A if A/B is a torsion-group. Let I be an ideal of a commutative ring K; then the spectrum Sp(I) of I is the set of all prime ideals P of K such that I≤P. If R is a ring, M is an R-module and x ɛ M we denote by the annihilator of x in R. We recall that a group Γ is said to have finite torsion-free rank if it has a finite series in which each factoris either infinite cyclic or locally finite; its torsion-free rank r0(Γ) is then defined to be the number of infinite cyclic factors in such a series.


2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


2006 ◽  
Vol 05 (01) ◽  
pp. 1-17 ◽  
Author(s):  
U. ALBRECHT ◽  
S. BREAZ ◽  
W. WICKLESS

An n-ary endofunction on an abelian group G is a function f : Gn → G such that f(θg1,…,θgn) = θ f(g1,…,gn) for all endomorphisms θ of G. A group G is endoprimal if, for each natural number n, each n-ary endofunction has the following simple form: [Formula: see text] for some collection of integers {li : 1 ≤ i ≤ n}. The notion of endoprimality arises from universal algebra in a natural way and has been applied to the study of abelian groups in papers Davey and Pitkethly (97), Kaarli and Marki (99) and Göbel, Kaarli, Marki, and Wallutis (to appear). These papers make the case that the notion of endoprimality can give rise to interesting and tractable classes of abelian groups. We continue working along these lines, adapting our definition to make it more suitable for working with general classes of abelian groups. We study generalized endoprimal (ge) abelian groups. Here every n-ary endofunction is required to be of the form [Formula: see text] for some collection of central endomorphisms {λi : 1 ≤ i ≤ n} of G. (Note that such a sum is always an endofunction.) We characterize generalized endoprimal abelian groups in a number of cases, in particular for torsion groups, torsion-free finite rank groups G such that E(G) has zero nil radical, and self-small mixed groups of finite torsion-free rank.


2011 ◽  
Vol 10 (06) ◽  
pp. 1283-1290 ◽  
Author(s):  
ZAHEDEH AZHDARI ◽  
MEHRI AKHAVAN-MALAYERI

Let G be a group and let Aut c(G) be the group of all central automorphisms of G. Let C* = C Aut c(G)(Z(G)) be the set of all central automorphisms of G fixing Z(G) elementwise. In this paper, we prove that if G is a finitely generated nilpotent group of class 2, then C* ≃ Inn (G) if and only if Z(G) is cyclic or Z(G) ≃ Cm × ℤr where [Formula: see text] has exponent dividing m and r is torsion-free rank of Z(G). Also we prove that if G is a finitely generated group which is not torsion-free, then C* = Inn (G) if and only if G is nilpotent group of class 2 and Z(G) is cyclic or Z(G) ≃ Cm × ℤr where [Formula: see text] has exponent dividing m and r is torsion-free rank of Z(G). In both cases, we show G has a particularly simple form.


1995 ◽  
Vol 38 (3) ◽  
pp. 475-484 ◽  
Author(s):  
Martin R. Pettet

It is shown that the full automorphism group of a finitely generated group G is virtually free if and only if the center Z(G) is finitely generated of torsion-free rank r at most two and, depending on the value of r, the central quotient G/Z(G) belongs to one of three precisely defined classes of virtually free groups. Some consequences and special cases are also discussed.


2010 ◽  
Vol 03 (02) ◽  
pp. 275-293
Author(s):  
Peter Danchev

Suppose FG is the F-group algebra of an arbitrary multiplicative abelian group G with p-component of torsion Gp over a field F of char (F) = p ≠ 0. Our theorems state thus: The factor-group S(FG)/Gp of all normed p-units in FG modulo Gp is always totally projective, provided G is a coproduct of groups whose p-components are of countable length and F is perfect. Moreover, if G is a p-mixed coproduct of groups with torsion parts of countable length and FH ≅ FG as F-algebras, then there is a totally projective p-group T of length ≤ Ω such that H × T ≅ G × T. These are generalizations to results by Hill-Ullery (1997). As a consequence, if G is a p-splitting coproduct of groups each of which has p-component with length < Ω and FH ≅ FG are F-isomorphic, then H is p-splitting. This is an extension of a result of May (1989). Our applications are the following: Let G be p-mixed algebraically compact or p-mixed splitting with torsion-complete Gp or p-mixed of torsion-free rank one with torsion-complete Gp. Then the F-isomorphism FH ≅ FG for any group H implies H ≅ G. Moreover, letting G be a coproduct of torsion-complete p-groups or G be a coproduct of p-local algebraically compact groups, then [Formula: see text]-isomorphism [Formula: see text] for an arbitrary group H over the simple field [Formula: see text] of p-elements yields H ≅ G. These completely settle in a more general form a question raised by May (1979) for p-torsion groups and also strengthen results due to Beers-Richman-Walker (1983).


1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


2018 ◽  
Vol 61 (1) ◽  
pp. 295-304 ◽  
Author(s):  
R. R. Andruszkiewicz ◽  
M. Woronowicz

AbstractThe relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.


Sign in / Sign up

Export Citation Format

Share Document