scholarly journals ISOTOPY AND HOMEOMORPHISM OF CLOSED SURFACE BRAIDS

2020 ◽  
pp. 1-10
Author(s):  
MARK GRANT ◽  
AGATA SIENICKA

Abstract The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.

2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


Author(s):  
D. D. Long

0. If Fg is a closed, orientable surface of genus g, then the mapping class group of Fg is the group whose elements are orientation preserving self homeomorphisms of Fg modulo isotopy. We shall denote this group by Mg. Recall that a group is said to be linear if it admits a faithful representation as a group of matrices (where the entries for this purpose will be in some field).


2006 ◽  
Vol 15 (09) ◽  
pp. 1231-1244 ◽  
Author(s):  
PING ZHANG

Consider a surface braid group of n strings as a subgroup of the isotopy group of homeomorphisms of the surface permuting n fixed distinguished points. Each automorphism of the surface braid group (respectively, of the special surface braid group) is shown to be a conjugate action on the braid group (respectively, on the special braid group) induced by a homeomorphism of the underlying surface if the closed surface, either orientable or non-orientable, is of negative Euler characteristic. In other words, the group of automorphisms of such a surface braid group is isomorphic to the extended mapping class group of the surface with n punctures, while the outer automorphism group of the surface braid group is isomorphic to the extended mapping class group of the closed surface itself.


Author(s):  
ANDREA BIANCHI

Abstract We consider the Birman–Hilden inclusion $\phi\colon\Br_{2g+1}\to\Gamma_{g,1}$ of the braid group into the mapping class group of an orientable surface with boundary, and prove that $\phi$ is stably trivial in homology with twisted coefficients in the symplectic representation $H_1(\Sigma_{g,1})$ of the mapping class group; this generalises a result of Song and Tillmann regarding homology with constant coefficients. Furthermore we show that the stable homology of the braid group with coefficients in $\phi^*(H_1(\Sigma_{g,1}))$ has only 4-torsion.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


2019 ◽  
Vol 11 (02) ◽  
pp. 273-292
Author(s):  
Charalampos Stylianakis

In this paper we show that the normal closure of the [Formula: see text]th power of a half-twist has infinite index in the mapping class group of a punctured sphere if [Formula: see text] is at least five. Furthermore, in some cases we prove that the quotient of the mapping class group of the punctured sphere by the normal closure of a power of a half-twist contains a free abelian subgroup. As a corollary we prove that the quotient of the hyperelliptic mapping class group of a surface of genus at least two by the normal closure of the [Formula: see text]th power of a Dehn twist has infinite order, and for some integers [Formula: see text] the quotient contains a free group. As a second corollary we recover a result of Coxeter: the normal closure of the [Formula: see text]th power of a half-twist in the braid group of at least four strands has infinite index. Our method is to reformulate the Jones representation of the mapping class group of a punctured sphere, using the action of Hecke algebras on [Formula: see text]-graphs, as introduced by Kazhdan–Lusztig.


Author(s):  
Javier Aramayona ◽  
Priyam Patel ◽  
Nicholas G Vlamis

Abstract It is a classical result that pure mapping class groups of connected, orientable surfaces of finite type and genus at least 3 are perfect. In stark contrast, we construct nontrivial homomorphisms from infinite-genus mapping class groups to the integers. Moreover, we compute the first integral cohomology group associated to the pure mapping class group of any connected orientable surface of genus at least 2 in terms of the surface’s simplicial homology. In order to do this, we show that pure mapping class groups of infinite-genus surfaces split as a semi-direct product.


2020 ◽  
Vol 71 (2) ◽  
pp. 539-555
Author(s):  
Miguel A Maldonado ◽  
Miguel A Xicoténcatl

Abstract The mapping class group $\Gamma ^k(N_g)$ of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of ${\mathbb{R}} \textrm{P}^2$, we analyze the Serre spectral sequence of a fiber bundle $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k \to X_k \to BSO(3)$ where $X_k$ is a $K(\Gamma ^k({\mathbb{R}} \textrm{P}^2),1)$ and $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$ denotes the configuration space of unordered $k$-tuples of distinct points in ${\mathbb{R}} \textrm{P}^2$. As a consequence, we express the mod-2 cohomology of $\Gamma ^k({\mathbb{R}} \textrm{P}^2)$ in terms of that of $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$.


2020 ◽  
pp. 1-15
Author(s):  
WILLIAM M. GOLDMAN ◽  
SEAN LAWTON ◽  
EUGENE Z. XIA

Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$ -character variety of $\unicode[STIX]{x1D6F4}$ . We show that the action is ergodic with respect to the natural symplectic measure on the character variety.


Sign in / Sign up

Export Citation Format

Share Document