A drought experiment using mobile shelters: the effect of drought on barley yield, water use and nutrient uptake

1978 ◽  
Vol 91 (3) ◽  
pp. 599-623 ◽  
Author(s):  
W. Day ◽  
B. J. Legg ◽  
B. K. French ◽  
A. E. Johnston ◽  
D. W. Lawlor ◽  
...  

SummaryAutomatic mobile shelters were used to keep rain off a barley crop in a drought experiment. The treatments ranged from no water during the growing season to regular weekly irrigation. This paper reports the effect of drought on the harvest yield and its components, on water use and nutrient uptake.Drought caused large decreases in yield, and affected each component of the grain yield. The magnitude of each component varied by up to 25% between treatments, and much of the variation could be accounted for by linear regression against the mean soil water deficit in one of three periods. For the number of grains per ear, the relevant period included tillering and ear formation; for the number of ears per unit ground area, the period included stem extension and tiller death; for grain mass, the period included grain filling.The harvest yields were linearly related to water use, with no indication of a critical period of drought sensitivity. The relation of grain yield to the maximum potential soil water deficit did show that a prolonged early drought had an exceptionally large effect on both yield and water use.Two unsheltered irrigation experiments, also on barley, were made in the same year on a nearby site. The effects of drought on yield in these experiments were in good agreement with the effects observed on the mobile shelter site.When fully irrigated, the small plots under the mobile shelters used water 11% faster than larger areas of crop, because of advection. The maximum depth from which water was extracted was unaffected by the drought treatment. When 50% of the available soil water had been used the uptake rate decreased, but the maximum depth of uptake continued to increase.Measurements of crop nutrients at harvest showed that nitrogen uptake was large, because of site history, and that phosphate uptake was decreased by drought to such an extent that phosphate shortage may have limited yield.

1984 ◽  
Vol 103 (1) ◽  
pp. 189-199 ◽  
Author(s):  
M. J. Goss ◽  
K. R. Howse ◽  
Judith M. Vaughan-Williams ◽  
M. A. Ward ◽  
W. Jenkins

SummaryIn each of the years from September 1977 to July 1982 winter wheat was grown on one or more of three clay soil sites (clay content 35–55%) in Oxfordshire where the climate is close to the average for the area of England growing winter cereals.The effects on crop water use of different soil management practices, including ploughing, direct drilling and subsoil drainage, are compared. Cultivation treatment had little effect on the maximum depth of water extraction, which on average in these clay soils was 1·54 m below the soil surface. Maximum soil water deficit was also little affected by cultivation; the maximum recorded value was 186±7·6 mm. Subsoil drainage increased the maximum depth of water extraction by approximately 15 cm and the maximum soil water deficit by about 17 mm.Generally soil management had little effect on either total water use by the crop which was found to be close to the potential evaporation estimated by the method of Penman, or water use efficiency which for these crops was about 52 kg/ha par mm water used.Results are discussed in relation to limitations to potential yield.


1994 ◽  
Vol 63 (2) ◽  
pp. 339-344 ◽  
Author(s):  
Michihiro WADA ◽  
Luiz J.C.B. CARVALHO ◽  
Gustavo C. RODRIGUES ◽  
Ryuichi ISHII

2013 ◽  
Vol 404 ◽  
pp. 415-419
Author(s):  
Heng Jia Zhang ◽  
Jun Hui Li

The soil water contents in spring maize field were monitored continuously using soil neutron probe combined with drying-weighing method. Meanwhile, the effect of limited irrigation on crop periodic water consumption and its percentage in total water use, leaf area index, and grain yield of spring maize were explored. The results indicated that both the periodic water consumption and its percentage in total water use varied from low to high then to low within maize growing season, with the maximum valued both at silking to middle grain filling. In addition, leaf area indexes were greatly improved by full irrigation before maize filling, and grain yield was not reduced by efficient limited irrigation management, contrarily, yield increase and 31.1% of significant irrigation water saving were achieved, which was beneficial to the optimization of soil water ecological processing and limited irrigation management.


2011 ◽  
Vol 35 (2) ◽  
pp. 195-202
Author(s):  
Wei WANG ◽  
Yi-Xia CAI ◽  
Jian-Chang YANG ◽  
Qing-Sen ZHU

Sign in / Sign up

Export Citation Format

Share Document