scholarly journals Best linear unbiased prediction for genetic evaluation in reciprocal recurrent selection with popcorn populations

2013 ◽  
Vol 152 (3) ◽  
pp. 428-438
Author(s):  
J. M. S. VIANA ◽  
G. B. MUNDIM ◽  
R. O. DELIMA ◽  
F. F. E SILVA ◽  
M. D. V. DE RESENDE

SUMMARYThe objective of the present study was to present the theory and application of best linear unbiased prediction (BLUP) in reciprocal recurrent selection (RRS). Seven progeny tests from two RRS programmes with popcorn (Zea mays L. ssp. mays [syn. Zea mays L. ssp. everta (Sturtev.) Zhuk.]) populations were conducted and analysed for expansion volume and grain yield. The interpopulation half- and full-sib family models were fitted using ASReml software. Half-sib selection is equivalent to selection for the general combining ability (GCA) of the common parents. With inbred full-sib progeny and BLUP analysis, it is possible to predict the general and specific combining ability effects. The standard error of prediction of the progeny effect was lower than the standard deviation of the best linear unbiased estimation (BLUE) estimate. For half- and full-sib RRS, the BLUE and BLUP provided highly correlated estimates of progeny genotypic values. The coincidence between selected parents ranged from 64 to 95%. With inbred full-sib progeny, the correlations between the BLUE of progeny genotypic values and the BLUP of GCA effects were lower. Consequently, the coincidence between selected parents was lower, ranging from 0 to 57%. The percentage of common selected inbred progeny based on the BLUE and BLUP of the progeny genotypic value ranged from 57 to 100%.

2012 ◽  
Vol 151 (3) ◽  
pp. 381-395 ◽  
Author(s):  
J. FORKMAN ◽  
H-P. PIEPHO

SUMMARYThe model for analysis of randomized complete block (RCB) experiments usually includes two factors: block and treatment. If treatment is modelled as fixed, best linear unbiased estimation (BLUE) is used, and treatment means estimate expected means. If treatment is modelled as random, best linear unbiased prediction (BLUP) shrinks the treatment means towards the overall mean, which results in smaller root-mean-square error (RMSE) in prediction of means. This theoretical result holds provided the variance components are known, but in practice the variance components are estimated. BLUP using estimated variance components is called empirical best linear unbiased prediction (EBLUP). In small experiments, estimates can be unreliable and the usefulness of EBLUP is uncertain. The present paper investigates, through simulation, the performance of EBLUP in small RCB experiments with normally as well as non-normally distributed random effects. The methods of Satterthwaite (1946) and of Kenward & Roger (1997, 2009), as implemented in the SAS System, were studied. Performance was measured by RMSE, in prediction of means, and coverage of prediction intervals. In addition, a Bayesian approach was used for prediction of treatment differences and computation of credible intervals. EBLUP performed better than BLUE with regard to RMSE, also when the number of treatments was small and when the treatment effects were non-normally distributed. The methods of Satterthwaite and of Kenward & Roger usually produced approximately correct coverage of prediction intervals. The Bayesian method gave the smallest RMSE and usually more accurate coverage of intervals than the other methods.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1013
Author(s):  
Bryan Irvine Lopez ◽  
Seung-Hwan Lee ◽  
Jong-Eun Park ◽  
Dong-Hyun Shin ◽  
Jae-Don Oh ◽  
...  

The authors wish to make the following corrections to this paper [...]


Author(s):  
B Grundy ◽  
WG Hill

An optimum way of selecting animals is through a prediction of their genetic merit (estimated breeding value, EBV), which can be achieved using a best linear unbiased predictor (BLUP) (Henderson, 1975). Selection decisions in a commercial environment, however, are rarely made solely on genetic merit but also on additional factors, an important example of which is to limit the accumulation of inbreeding. Comparison of rates of inbreeding under BLUP for a range of hentabilities highlights a trend of increasing inbreeding with decreasing heritability. It is therefore proposed that selection using a heritability which is artificially raised would yield lower rates of inbreeding than would otherwise be the case.


Sign in / Sign up

Export Citation Format

Share Document