hanwoo cattle
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 27)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Masoumeh Naserkheil ◽  
Hossein Mehrban ◽  
Deukmin Lee ◽  
Mi Na Park

The importance of meat and carcass quality is growing in beef cattle production to meet both producer and consumer demands. Primal cut yields, which reflect the body compositions of carcass, could determine the carcass grade and, consequently, command premium prices. Despite its importance, there have been few genome-wide association studies on these traits. This study aimed to identify genomic regions and putative candidate genes related to 10 primal cut traits, including tenderloin, sirloin, striploin, chuck, brisket, top round, bottom round, shank, flank, and rib in Hanwoo cattle using a single-step Bayesian regression (ssBR) approach. After genomic data quality control, 43,987 SNPs from 3,745 genotyped animals were available, of which 3,467 had phenotypic records for the analyzed traits. A total of 16 significant genomic regions (1-Mb window) were identified, of which five large-effect quantitative trait loci (QTLs) located on chromosomes 6 at 38–39 Mb, 11 at 21–22 Mb, 14 at 6–7 Mb and 26–27 Mb, and 19 at 26–27 Mb were associated with more than one trait, while the remaining 11 QTLs were trait-specific. These significant regions were harbored by 154 genes, among which TOX, FAM184B, SPP1, IBSP, PKD2, SDCBP, PIGY, LCORL, NCAPG, and ABCG2 were noteworthy. Enrichment analysis revealed biological processes and functional terms involved in growth and lipid metabolism, such as growth (GO:0040007), muscle structure development (GO:0061061), skeletal system development (GO:0001501), animal organ development (GO:0048513), lipid metabolic process (GO:0006629), response to lipid (GO:0033993), metabolic pathways (bta01100), focal adhesion (bta04510), ECM–receptor interaction (bta04512), fat digestion and absorption (bta04975), and Rap1 signaling pathway (bta04015) being the most significant for the carcass primal cut traits. Thus, identification of quantitative trait loci regions and plausible candidate genes will aid in a better understanding of the genetic and biological mechanisms regulating carcass primal cut yields.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1886
Author(s):  
Masoumeh Naserkheil ◽  
Hossein Mehrban ◽  
Deukmin Lee ◽  
Mi Na Park

There is a growing interest worldwide in genetically selecting high-value cut carcass weights, which allows for increased profitability in the beef cattle industry. Primal cut yields have been proposed as a potential indicator of cutability and overall carcass merit, and it is worthwhile to assess the prediction accuracies of genomic selection for these traits. This study was performed to compare the prediction accuracy obtained from a conventional pedigree-based BLUP (PBLUP) and a single-step genomic BLUP (ssGBLUP) method for 10 primal cut traits—bottom round, brisket, chuck, flank, rib, shank, sirloin, striploin, tenderloin, and top round—in Hanwoo cattle with the estimators of the linear regression method. The dataset comprised 3467 phenotypic observations for the studied traits and 3745 genotyped individuals with 43,987 single-nucleotide polymorphisms. In the partial dataset, the accuracies ranged from 0.22 to 0.30 and from 0.37 to 0.54 as evaluated using the PBLUP and ssGBLUP models, respectively. The accuracies of PBLUP and ssGBLUP with the whole dataset varied from 0.45 to 0.75 (average 0.62) and from 0.52 to 0.83 (average 0.71), respectively. The results demonstrate that ssGBLUP performed better than PBLUP averaged over the 10 traits, in terms of prediction accuracy, regardless of considering a partial or whole dataset. Moreover, ssGBLUP generally showed less biased prediction and a value of dispersion closer to 1 than PBLUP across the studied traits. Thus, the ssGBLUP seems to be more suitable for improving the accuracy of predictions for primal cut yields, which can be considered a starting point in future genomic evaluation for these traits in Hanwoo breeding practice.


2021 ◽  
Vol 63 (6) ◽  
pp. 1232-1246
Author(s):  
DooHo Lee ◽  
Yeongkuk Kim ◽  
Yoonji Chung ◽  
Dongjae Lee ◽  
Dongwon Seo ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3102
Author(s):  
Masoumeh Naserkheil ◽  
Deukmin Lee ◽  
Kihoon Chung ◽  
Mi Na Park ◽  
Hossein Mehrban

This study was carried out to estimate the variance components, heritability, and genetic correlations between the carcass traits and primal cut yields in Hanwoo cattle. Carcass traits comprising 5622 records included back fat thickness (BFT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). The 10 primal cut yields from 3467 Hanwoo steers included the tenderloin (TLN), sirloin (SLN), striploin (STLN), chuck (CHK), brisket (BSK), top round (TRD), bottom round (BRD), rib (RB), shank (SK), and flank (FK). In addition, three composite traits were formed by combining primal cut yields as novel traits according to consumer preferences and market price: high-value cuts (HVC), medium-value cuts (MVC), and low-value cuts (LVC). Heritability estimates for the interest of traits were moderate to high, ranging from 0.21 ± 0.04 for CHK to 0.59 ± 0.05 for MS. Except genetic correlations between RB and other primal cut traits, favorable and moderate to high correlations were observed among the yields of primal cut that ranged from 0.38 ± 0.14 (CHK and FK) to 0.93 ± 0.01 (TRD and BRD). Moreover, the estimated genetic correlations of CW and EMA with primal cut yields and three composite traits were positive and moderate to strong, except for BFT, which was negative. These results indicate that genetic progress can be achieved for all traits, and selection to increase the yields of primal cuts can lead to considerable profitability in the Hanwoo beef industry.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2066
Author(s):  
Swati Srivastava ◽  
Bryan Irvine Lopez ◽  
Himansu Kumar ◽  
Myoungjin Jang ◽  
Han-Ha Chai ◽  
...  

Hanwoo was originally raised for draft purposes, but the increase in local demand for red meat turned that purpose into full-scale meat-type cattle rearing; it is now considered one of the most economically important species and a vital food source for Koreans. The application of genomic selection in Hanwoo breeding programs in recent years was expected to lead to higher genetic progress. However, better statistical methods that can improve the genomic prediction accuracy are required. Hence, this study aimed to compare the predictive performance of three machine learning methods, namely, random forest (RF), extreme gradient boosting method (XGB), and support vector machine (SVM), when predicting the carcass weight (CWT), marbling score (MS), backfat thickness (BFT) and eye muscle area (EMA). Phenotypic and genotypic data (53,866 SNPs) from 7324 commercial Hanwoo cattle that were slaughtered at the age of around 30 months were used. The results showed that the boosting method XGB showed the highest predictive correlation for CWT and MS, followed by GBLUP, SVM, and RF. Meanwhile, the best predictive correlation for BFT and EMA was delivered by GBLUP, followed by SVM, RF, and XGB. Although XGB presented the highest predictive correlations for some traits, we did not find an advantage of XGB or any machine learning methods over GBLUP according to the mean squared error of prediction. Thus, we still recommend the use of GBLUP in the prediction of genomic breeding values for carcass traits in Hanwoo cattle.


2021 ◽  
Vol 55 (1) ◽  
pp. 91-99
Author(s):  
Hyui-Ri Na ◽  
◽  
Gui-Seck Bae ◽  
Chang-Hyun Kim ◽  
Eun-Joong Kim ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 129
Author(s):  
Yong Geum Shin ◽  
Dhanushka Rathnayake ◽  
Hong Seok Mun ◽  
Muhammad Ammar Dilawar ◽  
Sreynak Pov ◽  
...  

This study examined the effects of stevioside (S) and organic selenium (O-Se) supplementation on the sensory attributes, microbial activity, fatty acid composition, and meat quality traits of Hanwoo cattle (Korean native cattle). Twenty-four Hanwoo cattle (663 ± 22 kg body weight) were assigned to two dietary treatments for 8 months: control diet and 1% stevioside with 0.08% organic selenium supplemented diet. S and O-Se inclusion in the diet enhanced the final body weight, weight gain, and carcass crude protein (p < 0.05). Moreover, supplementation with S and O-Se had a significant effect on lowering the drip loss and shear force and enhanced the a* (redness) of the longissimus dorsi muscle (p < 0.05). The inclusion of dietary S and O-Se improved the sum of the polyunsaturated fatty acid (ΣPUFAs) content of the meat, and the oxidative status (TBARS) values during second week of storage decreased by 42% (p < 0.05). On the other hand, the microbial count tended to decrease (7.62 vs. 7.41 log10 CFU), but it was not significant (p > 0.05), and all sensory attributes were enhanced in the S and O-Se supplemented diet. Overall, these results suggest that supplementation of the ruminant diet with stevioside and organic selenium improves the growth performance, carcass traits, and meat quality with enriched PUFAs profile and retards the lipid oxidation during the storage period in beef.


Sign in / Sign up

Export Citation Format

Share Document