scholarly journals A large deviation principle for a Brownian immigration particle system

2005 ◽  
Vol 42 (04) ◽  
pp. 1120-1133
Author(s):  
Mei Zhang

We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson random measure with a Lebesgue intensity measure.

2005 ◽  
Vol 42 (4) ◽  
pp. 1120-1133
Author(s):  
Mei Zhang

We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson random measure with a Lebesgue intensity measure.


1998 ◽  
Vol 30 (03) ◽  
pp. 657-675 ◽  
Author(s):  
Zeng-Hu Li

The immigration processes associated with a given branching particle system are formulated by skew convolution semigroups. It is shown that every skew convolution semigroup corresponds uniquely to a locally integrable entrance law for the branching particle system. The immigration particle system may be constructed using a Poisson random measure based on a Markovian measure determined by the entrance law. In the special case where the underlying process is a minimal Brownian motion in a bounded domain, a general representation is given for locally integrable entrance laws for the branching particle system. The convergence of immigration particle systems to measure-valued immigration processes is also studied.


Author(s):  
Hassan Dadashi

We demonstrate the large deviation principle in the small noise limit for the mild solution of semilinear stochastic evolution equations with monotone nonlinearity and multiplicative Poisson noise. A recently developed method in studying the large deviation principle, weak convergent method, is employed. We apply the result obtained by Budhiraja et al.,7 that reveals the variational representation of exponential integrals w.r.t. the Poisson random measure. Our framework covers a wide range of parabolic, hyperbolic and functional differential equations. We give some examples to illustrate the applications of our results.


1998 ◽  
Vol 30 (3) ◽  
pp. 657-675 ◽  
Author(s):  
Zeng-Hu Li

The immigration processes associated with a given branching particle system are formulated by skew convolution semigroups. It is shown that every skew convolution semigroup corresponds uniquely to a locally integrable entrance law for the branching particle system. The immigration particle system may be constructed using a Poisson random measure based on a Markovian measure determined by the entrance law. In the special case where the underlying process is a minimal Brownian motion in a bounded domain, a general representation is given for locally integrable entrance laws for the branching particle system. The convergence of immigration particle systems to measure-valued immigration processes is also studied.


Author(s):  
Andrei Khrennikov ◽  
Achref Majid

In this paper, we prove a large deviation principle for the background field in prequantum statistical field model. We show a number of examples by choosing a specific random field in our model.


2010 ◽  
Vol 10 (03) ◽  
pp. 315-339 ◽  
Author(s):  
A. A. DOROGOVTSEV ◽  
O. V. OSTAPENKO

We establish the large deviation principle (LDP) for stochastic flows of interacting Brownian motions. In particular, we consider smoothly correlated flows, coalescing flows and Brownian motion stopped at a hitting moment.


Sign in / Sign up

Export Citation Format

Share Document