A property of longtailed distributions

1984 ◽  
Vol 21 (01) ◽  
pp. 80-87 ◽  
Author(s):  
Paul Embrechts ◽  
Edward Omey

We investigate sufficient conditions so that is subexponential. Here F is a distribution function on [0, ∞[, with finite mean. Some applications to risk theory and rates of convergence in renewal theory are given.

1984 ◽  
Vol 21 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Paul Embrechts ◽  
Edward Omey

We investigate sufficient conditions so that is subexponential. Here F is a distribution function on [0, ∞[, with finite mean. Some applications to risk theory and rates of convergence in renewal theory are given.


1989 ◽  
Vol 26 (4) ◽  
pp. 892-897 ◽  
Author(s):  
Emily S. Murphree

A distribution function F on (0,∞) belongs to the subexponential class if the ratio of 1 – F(2)(x) to 1 – F(x) converges to 2 as x →∞. A necessary condition for membership in is used to prove that a certain class of functions previously thought to be contained in has members outside of . Sufficient conditions on the tail of F are found which ensure F belongs to ; these conditions generalize previously published conditions.


1971 ◽  
Vol 14 (3) ◽  
pp. 451-452
Author(s):  
M. V. Menon ◽  
V. Seshadri

Let X1, X2, …, be a sequence of independent and identically distributed random variables, with the common distribution function F(x). The sequence is said to be normally attracted to a stable law V with characteristic exponent α, if for some an (converges in distribution to V). Necessary and sufficient conditions for normal attraction are known (cf [1, p. 181]).


1985 ◽  
Vol 28 (2) ◽  
pp. 167-183 ◽  
Author(s):  
Olav Njåstad

The classical Hamburger moment problem can be formulated as follows: Given a sequence {cn:n=0,1,2,…} of real numbers, find necessary and sufficient conditions for the existence of a distribution function ψ (i.e. a bounded, real-valued, non-decreasing function) on (– ∞,∞) with infinitely many points of increase, such that , n = 0,1,2, … This problem was posed and solved by Hamburger [5] in 1921. The corresponding problem for functions ψ on the interval [0,∞) had already been treated by Stieltjes [15] in 1894. The characterizations were in terms of positivity of Hankel determinants associated with the sequence {cn}, and the original proofs rested on the theory of continued fractions. Much work has since been done on questions connected with these problems, using orthogonal functions and extension of positive definite functionals associated with the sequence. Accounts of the classical moment problems with later developments can be found in [1,4,14]. Good modern accounts of the theory of orthogonal polynomials can be found in [2,3].


1985 ◽  
Vol 22 (02) ◽  
pp. 280-287 ◽  
Author(s):  
Ştefan P. Niculescu ◽  
Edward Omey

Equivalence of rates of convergence in the central limit theorem for the vector of maximum sums and the corresponding first-passage variables is established. A similar result for the vector of partial sums and the corresponding renewal variables is also given. The results extend to several dimensions the bivariate results of Ahmad (1981).


Author(s):  
Paul Embrechts ◽  
Charles M. Goldie

AbstractFor a distribution function F on [0, ∞] we say F ∈ if {1 – F(2)(x)}/{1 – F(x)}→2 as x→∞, and F∈, if for some fixed γ > 0, and for each real , limx→∞ {1 – F(x + y)}/{1 – F(x)} ═ e– n. Sufficient conditions are given for the statement F ∈ F * G ∈ and when both F and G are in y it is proved that F*G∈pF + 1(1 – p) G ∈ for some (all) p ∈(0,1). The related classes ℒt are proved closed under convolutions, which implies the closure of the class of positive random variables with regularly varying tails under multiplication (of random variables). An example is given that shows to be a proper subclass of ℒ 0.


1970 ◽  
Vol 38 ◽  
pp. 103-111 ◽  
Author(s):  
Izumi Kubo

We shall discuss the sample path continuity of a stationary process assuming that the spectral distribution function F(λ) is given. Many kinds of sufficient conditions have been given in terms of the covariance function or the asymptotic behavior of the spectral distribution function.


1969 ◽  
Vol 5 (2) ◽  
pp. 213-226 ◽  
Author(s):  
Lauri Kauppi ◽  
Pertti Ojantakanen

One of the basic functions of risk theory is the so-called generalised Poisson function F(x), which gives the probability that the total amount of claims ξ does not exceed some given limit x during a year (or during some other fixed time period). For F(x) is obtained the well known expansion where n is the expected number of claims during this time period and Sk*(x) is the k:th convolution of the distribution function S(z) of the size of one claim. The formula (1) is, however, much too inconvenient for numerical computations and for most other applications. One of the main problems of risk theory, which is still partly open, is to find suitable methods to compute, or at least to approximate, the generalised Poisson function.A frequently used approximation is to replace F(x) by the normal distribution function having the same mean and standard deviation as F as follows: where α1 and α2 are the first zero-moments of S(z): SM(Z) is here again the distribution function of the size of one claim. To obtain more general results a reinsurance arrangement is assumed under which the maximum net retention is M. Hence the portfolio on the company's own retention is considered. If the reinsurance is of Excess of Loss type, then where S(z) is the distribution function of the size of one total claim.


1977 ◽  
Vol 14 (02) ◽  
pp. 309-319 ◽  
Author(s):  
A. A. Balkema ◽  
S. I. Resnick

Necessary and sufficient conditions are given for a distribution function in ℝ2 to be max-infinitely divisible. The d.f. F is max i.d. if F t is a d.f. for every t > 0. This property is essential in defining multivariate extremal processes and arises in an approach to the study of the range of an i.i.d. sample.


1999 ◽  
Vol 31 (1) ◽  
pp. 178-198 ◽  
Author(s):  
Frans A. Boshuizen ◽  
Robert P. Kertz

In this paper, in work strongly related with that of Coffman et al. [5], Bruss and Robertson [2], and Rhee and Talagrand [15], we focus our interest on an asymptotic distributional comparison between numbers of ‘smallest’ i.i.d. random variables selected by either on-line or off-line policies. Let X1,X2,… be a sequence of i.i.d. random variables with distribution function F(x), and let X1,n,…,Xn,n be the sequence of order statistics of X1,…,Xn. For a sequence (cn)n≥1 of positive constants, the smallest fit off-line counting random variable is defined by Ne(cn) := max {j ≤ n : X1,n + … + Xj,n ≤ cn}. The asymptotic joint distributional comparison is given between the off-line count Ne(cn) and on-line counts Nnτ for ‘good’ sequential (on-line) policies τ satisfying the sum constraint ∑j≥1XτjI(τj≤n) ≤ cn. Specifically, for such policies τ, under appropriate conditions on the distribution function F(x) and the constants (cn)n≥1, we find sequences of positive constants (Bn)n≥1, (Δn)n≥1 and (Δ'n)n≥1 such that for some non-degenerate random variables W and W'. The major tools used in the paper are convergence of point processes to Poisson random measure and continuous mapping theorems, strong approximation results of the normalized empirical process by Brownian bridges, and some renewal theory.


Sign in / Sign up

Export Citation Format

Share Document