A joint characterization of the multinomial distribution and the Poisson process

1983 ◽  
Vol 20 (01) ◽  
pp. 202-208 ◽  
Author(s):  
George Kimeldorf ◽  
Peter F. Thall

It has been recently proved that if N, X 1, X 2, … are non-constant mutually independent random variables with X 1,X 2, … identically distributed and N non-negative and integer-valued, then the independence of and implies that X 1 is Bernoulli and N is Poisson. A well-known theorem in point process theory due to Fichtner characterizes a Poisson process in terms of a sum of independent thinnings. In the present article, simultaneous generalizations of both of these results are provided, including a joint characterization of the multinomial distribution and the Poisson process.

1983 ◽  
Vol 20 (1) ◽  
pp. 202-208 ◽  
Author(s):  
George Kimeldorf ◽  
Peter F. Thall

It has been recently proved that if N, X1, X2, … are non-constant mutually independent random variables with X1,X2, … identically distributed and N non-negative and integer-valued, then the independence of and implies that X1 is Bernoulli and N is Poisson. A well-known theorem in point process theory due to Fichtner characterizes a Poisson process in terms of a sum of independent thinnings. In the present article, simultaneous generalizations of both of these results are provided, including a joint characterization of the multinomial distribution and the Poisson process.


1972 ◽  
Vol 9 (3) ◽  
pp. 681-683
Author(s):  
Leon Podkaminer

The probabilities of the occurrence of n events in a certain time period are calculated under the assumptions that the time intervals between the neighbouring events are mutually independent random variables, satisfying some analytic conditions.


1967 ◽  
Vol 4 (2) ◽  
pp. 402-405 ◽  
Author(s):  
H. D. Miller

Let X(t) be the position at time t of a particle undergoing a simple symmetrical random walk in continuous time, i.e. the particle starts at the origin at time t = 0 and at times T1, T1 + T2, … it undergoes jumps ξ1, ξ2, …, where the time intervals T1, T2, … between successive jumps are mutually independent random variables each following the exponential density e–t while the jumps, which are independent of the τi, are mutually independent random variables with the distribution . The process X(t) is clearly a Markov process whose state space is the set of all integers.


1981 ◽  
Vol 18 (3) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


1975 ◽  
Vol 12 (3) ◽  
pp. 435-446 ◽  
Author(s):  
Valerie Isham

A class of point processes is considered, in which the locations of the points are independent random variables. In particular some properties of the process in which the distribution function of the position of the nth event is the n-fold convolution of some distribution function F, are investigated. It is shown that, under fairly general conditions, the process remote from the origin will be asymptotically Poisson. It is also shown that the variance of the number of events in the interval (0, t] is . Some generalisations are discussed.


1981 ◽  
Vol 18 (03) ◽  
pp. 652-659 ◽  
Author(s):  
M. J. Phillips

The negative exponential distribution is characterized in terms of two independent random variables. Only one of the random variables has a negative exponential distribution whilst the other can belong to a wide class of distributions. This result is then applied to two models for the reliability of a system of two modules subject to revealed and unrevealed faults to show when the models are equivalent. It is also shown, under certain conditions, that the system availability is only independent of the distribution of revealed failure times in one module when unrevealed failure times in the other module have a negative exponential distribution.


1986 ◽  
Vol 23 (01) ◽  
pp. 221-226 ◽  
Author(s):  
Norbert Henze

In a homogeneous Poisson process in R d , consider an arbitrary point X and let Y be its kth nearest neighbour. Denote by Rk the rank of X in the proximity order defined by Y, i.e., Rk = j if X is the jth nearest neighbour to Y. A representation for Rk in terms of a sum of independent random variables is obtained, and the limiting distribution of Rk, as k →∞, is shown to be normal. This result generalizes to mixtures of Poisson processes.


1992 ◽  
Vol 112 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Barbara Szyszkowicz

Let S(N(t)) be defined bywhere {N(t), t ≥ 0} is a Poisson process with intensity parameter 1/μ > 0 and {Xi i ≥ 1} is a family of independent random variables which are also independent of {N(t), t ≥ 0}.


Sign in / Sign up

Export Citation Format

Share Document