Randomly perturbed vibrations

1995 ◽  
Vol 32 (02) ◽  
pp. 417-428 ◽  
Author(s):  
M. Elshamy

Let u ε(t, x) be the position at time t of a point x on a string, where the time variable t varies in an interval I: = [0, T], T is a fixed positive time, and the space variable x varies in an interval J. The string is performing forced vibrations and also under the influence of small stochastic perturbations of intensity ε. We consider two kinds of random perturbations, one in the form of initial white noise, and the other is a nonlinear random forcing which involves the formal derivative of a Brownian sheet. When J has finite endpoints, a Dirichlet boundary condition is imposed for the solutions of the resulting non-linear wave equation. Assuming that the initial conditions are of sufficient regularity, we analyze the deviations u ε(t, x) from u 0(t, x), the unperturbed position function, as the intensity of perturbation ε ↓ 0 in the uniform topology. We also discuss some continuity properties of the realization of the solutions u ε(t, x).

1995 ◽  
Vol 32 (2) ◽  
pp. 417-428 ◽  
Author(s):  
M. Elshamy

Let uε(t, x) be the position at time t of a point x on a string, where the time variable t varies in an interval I: = [0, T], T is a fixed positive time, and the space variable x varies in an interval J. The string is performing forced vibrations and also under the influence of small stochastic perturbations of intensity ε. We consider two kinds of random perturbations, one in the form of initial white noise, and the other is a nonlinear random forcing which involves the formal derivative of a Brownian sheet. When J has finite endpoints, a Dirichlet boundary condition is imposed for the solutions of the resulting non-linear wave equation. Assuming that the initial conditions are of sufficient regularity, we analyze the deviations uε(t, x) from u0(t, x), the unperturbed position function, as the intensity of perturbation ε ↓ 0 in the uniform topology. We also discuss some continuity properties of the realization of the solutions uε(t, x).


2003 ◽  
Vol 13 (05) ◽  
pp. 1183-1195 ◽  
Author(s):  
YU HUANG

The linear wave equation on an interval with a van der Pol nonlinear boundary condition at one end and an energy-pumping condition at the other end is a useful model for studying chaotic behavior in distributed parameter system. In this paper, we study the dynamics of the Riemann invariants (u, v) of the wave equation by means of the total variations of the snapshots on the spatial interval. Our main contributions here are the classification of the growth of total variations of the snapshots of u and v in long-time horizon, namely, there are three cases when a certain parameter enters a different regime: the growth (i) remains bounded; (ii) is unbounded (but nonexponential); (iii) is exponential, for a large class of initial conditions with finite total variations. In particular, case (iii) corresponds to the onset of chaos. The results here sharpen those in an earlier work [Chen et al., 2001].


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Piero D’Ancona

AbstractWe study a defocusing semilinear wave equation, with a power nonlinearity $$|u|^{p-1}u$$ | u | p - 1 u , defined outside the unit ball of $$\mathbb {R}^{n}$$ R n , $$n\ge 3$$ n ≥ 3 , with Dirichlet boundary conditions. We prove that if $$p>n+3$$ p > n + 3 and the initial data are nonradial perturbations of large radial data, there exists a global smooth solution. The solution is unique among energy class solutions satisfying an energy inequality. The main tools used are the Penrose transform and a Strichartz estimate for the exterior linear wave equation perturbed with a large, time dependent potential.


2018 ◽  
Vol 24 (1) ◽  
pp. 289-309 ◽  
Author(s):  
Sorin Micu ◽  
Laurenţiu Emanuel Temereancă

This article studies the L2-norm of the boundary controls for the one dimensional linear wave equation with a space variable potential a = a(x). It is known these controls depend on a and their norms may increase exponentially with ||a||L∞. Our aim is to make a deeper study of this dependence in correlation with the properties of the initial data. The main result of the paper shows that the minimal L2−norm controls are uniformly bounded with respect to the potential a, if the initial data have only sufficiently high eigenmodes.


2007 ◽  
Vol 44 (02) ◽  
pp. 444-457
Author(s):  
M. Elshamy

Let u(t,x) be the displacement at time t of a point x on a string; the time variable t varies in the interval I≔[0,T] and the space variable x varies in the interval J≔[0,L], where T and L are fixed positive constants. The displacement u(t,x) is the solution to a stochastic wave equation. Two forms of random excitations are considered, a white noise in the initial condition and a nonlinear random forcing which involves the formal derivative of a Brownian sheet. In this article, we consider the continuity properties of solutions to this equation. Smoothness characteristics of these random fields, in terms of Hölder continuity, are also investigated.


2007 ◽  
Vol 44 (02) ◽  
pp. 444-457
Author(s):  
M. Elshamy

Let u(t,x) be the displacement at time t of a point x on a string; the time variable t varies in the interval I≔[0,T] and the space variable x varies in the interval J≔[0,L], where T and L are fixed positive constants. The displacement u(t,x) is the solution to a stochastic wave equation. Two forms of random excitations are considered, a white noise in the initial condition and a nonlinear random forcing which involves the formal derivative of a Brownian sheet. In this article, we consider the continuity properties of solutions to this equation. Smoothness characteristics of these random fields, in terms of Hölder continuity, are also investigated.


1996 ◽  
Vol 33 (4) ◽  
pp. 1159-1168 ◽  
Author(s):  
Maged Elshamy

In this article we study stochastic perturbations of partial differential equations describing forced-damped vibrations of a string. Two models of such stochastic disturbances are considered; one is triggered by an initial white noise, and the other is in the form of non-Gaussian random forcing. Let uε (t, x) be the displacement at time t of a point x on a string, where the time variable t ≧ 0, and the space variable . The small parameter ε controls the intensity of the random fluctuations. The random fields uε (t, x) are shown to satisfy a large deviations principle, and the random deviations of the unperturbed displacement function are analyzed as the noise parameter ε tends to zero.


1996 ◽  
Vol 33 (04) ◽  
pp. 1159-1168 ◽  
Author(s):  
Maged Elshamy

In this article we study stochastic perturbations of partial differential equations describing forced-damped vibrations of a string. Two models of such stochastic disturbances are considered; one is triggered by an initial white noise, and the other is in the form of non-Gaussian random forcing. Let uε (t, x) be the displacement at time t of a point x on a string, where the time variable t ≧ 0, and the space variable . The small parameter ε controls the intensity of the random fluctuations. The random fields uε (t, x) are shown to satisfy a large deviations principle, and the random deviations of the unperturbed displacement function are analyzed as the noise parameter ε tends to zero.


2001 ◽  
Author(s):  
Jiuhui Wu ◽  
Hualing Chen

Abstract A non-linear wave equation in a nonuniform sound space is deduced to determine the coupling relation between sound field and temperature field. Adopting Poisson’s integral a formula for calculating the interior sound field with uneven temperature field and certain initial conditions is developed. This establishes the corresponding theoretical foundation for studying the heat and vibroacoustic comfortability in a vehicle passenger room.


2007 ◽  
Vol 44 (2) ◽  
pp. 444-457
Author(s):  
M. Elshamy

Let u(t,x) be the displacement at time t of a point x on a string; the time variable t varies in the interval I≔[0,T] and the space variable x varies in the interval J≔[0,L], where T and L are fixed positive constants. The displacement u(t,x) is the solution to a stochastic wave equation. Two forms of random excitations are considered, a white noise in the initial condition and a nonlinear random forcing which involves the formal derivative of a Brownian sheet. In this article, we consider the continuity properties of solutions to this equation. Smoothness characteristics of these random fields, in terms of Hölder continuity, are also investigated.


Sign in / Sign up

Export Citation Format

Share Document