Small-angle X-ray scattering investigation of the micellar and submicellar forms of bovine casein

1989 ◽  
Vol 56 (3) ◽  
pp. 443-451 ◽  
Author(s):  
Helmut Pessen ◽  
Thomas F. Kumosinski ◽  
Harold M. Farrell

SummarySmall-angle X-ray scattering was performed on whole casein under submicellar (Ca2+ removed) and micellar (Ca2+ re-added) conditions. Submicellar scattering curves showed two Gaussian components which were interpreted in terms of a spherical particle with two concentric regions of different electron density, a relatively compact core of higher electron density and a looser shell. Normalized scattering curves and calculated distance distribution functions were consistent with this picture. Micellar scattering data, which can yield only cross-sectional information related to a window of scattered intensities, could be analysed by a sum of three Gaussians with no residual function. The two Gaussians with the lower radii of gyration were again taken to indicate the two concentric regions of different electron density of inhomogeneous spherical particles; the third Gaussian was shown to reflect the packing number of these particles within a cross-sectional portion of the micelle, which was 3:1 for this system. These results are a strong indication that submicellar inhomogeneous particles containing hydrophobically stabilized inner cores exist within the colloidal micelle.

1968 ◽  
Vol 12 ◽  
pp. 87-96
Author(s):  
R. W. Gould ◽  
S. R. Bates

AbstractIt has been recently shown that particle size distributions can be determined from small angle x-ray scattering data. Size distributions have previously been measured in aluminum-zinc and aluminum-silver alloys containing spherical Guinier-Preston zones. Inorder to obtain the size distribution it is only necessary to calculate the Guinier radius and the Porod radius.Dispersion hardened nickel alloys containing small spherical particles of thoria appear to be amenable to this type of analysis. A nickel-20% chromium-2% ThO2 alloy was selected for this study. The particle size distribution obtained by small angle x-ray scattering is compared with the transmission electron microscopy results found in the literature.


2020 ◽  
Vol 53 (1) ◽  
pp. 236-243
Author(s):  
Petr V. Konarev ◽  
Maxim V. Petoukhov ◽  
Liubov A. Dadinova ◽  
Natalia V. Fedorova ◽  
Pavel E. Volynsky ◽  
...  

Small-angle X-ray scattering (SAXS) is one of the major tools for the study of model membranes, but interpretation of the scattering data remains non-trivial. Current approaches allow the extraction of some structural parameters and the electron density profile of lipid bilayers. Here it is demonstrated that parametric modelling can be employed to determine the polydispersity of spherical or ellipsoidal vesicles and describe the electron density profile across the lipid bilayer. This approach is implemented in the computer program BILMIX. BILMIX delivers a description of the electron density of a lipid bilayer from SAXS data and simultaneously generates the corresponding size distribution of the unilamellar lipid vesicles.


2020 ◽  
Author(s):  
Kazuki Hagihara ◽  
Eiji Yamanaka ◽  
Yoshiyasu Ito ◽  
Kiyoshi Ogata ◽  
Kazuhiko Omote ◽  
...  

2018 ◽  
Vol 122 (45) ◽  
pp. 10320-10329 ◽  
Author(s):  
Amin Sadeghpour ◽  
Marjorie Ladd Parada ◽  
Josélio Vieira ◽  
Megan Povey ◽  
Michael Rappolt

2018 ◽  
Vol 96 (7) ◽  
pp. 599-605 ◽  
Author(s):  
Lou Massa ◽  
Chérif F. Matta

Quantum crystallography (QCr) is a branch of crystallography aimed at obtaining the complete quantum mechanics of a crystal given its X-ray scattering data. The fundamental value of obtaining an electron density matrix that is N-representable is that it ensures consistency with an underlying properly antisymmetrized wavefunction, a requirement of quantum mechanical validity. However, X-ray crystallography has progressed in an impressive way for decades based only upon the electron density obtained from the X-ray scattering data without the imposition of the mathematical structure of quantum mechanics. Therefore, one may perhaps ask regarding N-representability “why bother?” It is the purpose of this article to answer such a question by succinctly describing the advantage that is opened by QCr.


Sign in / Sign up

Export Citation Format

Share Document