scholarly journals Heteroclinic connections in plane Couette flow

2009 ◽  
Vol 621 ◽  
pp. 365-376 ◽  
Author(s):  
J. HALCROW ◽  
J. F. GIBSON ◽  
P. CVITANOVIĆ ◽  
D. VISWANATH

Plane Couette flow transitions to turbulence at Re ≈ 325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invariant sets in the state space of the Navier–Stokes equation, such as upper and lower branch equilibria and periodic and relative periodic solutions, that are distinct from the laminar solution. This article reports several heteroclinic connections between such objects and briefly describes a numerical method for locating heteroclinic connections. We show that the nature of streaks and streamwise rolls can change significantly along a heteroclinic connection.

2019 ◽  
Vol 862 ◽  
Author(s):  
Julius Rhoan T. Lustro ◽  
Genta Kawahara ◽  
Lennaert van Veen ◽  
Masaki Shimizu ◽  
Hiroshi Kokubu

The onset of transient turbulence in minimal plane Couette flow has been identified theoretically as homoclinic tangency with respect to a simple edge state for the Navier–Stokes equation, i.e., the gentle periodic orbit (the lower branch of a saddle-node pair) found by Kawahara & Kida (J. Fluid Mech., vol. 449, 2001, pp. 291–300). The first tangency of a pair of distinct homoclinic orbits to this periodic edge state has been discovered at Reynolds number $Re\equiv Uh/\unicode[STIX]{x1D708}=Re_{T}\approx 240.88$ ($U$, $h$, and $\unicode[STIX]{x1D708}$ being half the difference of the two wall velocities, half the wall separation, and the kinematic viscosity of fluid, respectively). At $Re>Re_{T}$ a Smale horseshoe appears on the Poincaré section through transversal homoclinic points to generate a transient chaos that eventually relaminarises. In numerical experiments a sustaining chaos, which is a consequence of period-doubling cascade stemming from the upper branch of another saddle-node pair of periodic orbits, is observed in a narrow range of the Reynolds number, $Re\approx 240.40$–240.46. At the upper edge of this $Re$ range it is found that the chaotic set touches the lower branch of this pair, i.e., another edge state. The corresponding chaotic attractor is replaced by a chaotic saddle at $Re\approx 240.46$, and subsequently this saddle touches the gentle periodic edge state on the boundary of the laminar basin at the tangency Reynolds number $Re=Re_{T}$. After this crisis on the boundary of the laminar basin, for $Re>Re_{T}$, chaotic transients that eventually relaminarise can be observed.


2014 ◽  
Vol 750 ◽  
Author(s):  
E. Brand ◽  
J. F. Gibson

AbstractWe present an equilibrium solution of plane Couette flow that is exponentially localized in both the spanwise and streamwise directions. The solution is similar in size and structure to previously computed turbulent spots and localized, chaotically wandering edge states of plane Couette flow. A linear analysis of dominant terms in the Navier–Stokes equations shows how the exponential decay rate and the wall-normal overhang profile of the streamwise tails are governed by the Reynolds number and the dominant spanwise wavenumber. Perturbations of the solution along its leading eigenfunctions cause rapid disruption of the interior roll-streak structure and formation of a turbulent spot, whose growth or decay depends on the Reynolds number and the choice of perturbation.


2014 ◽  
Vol 758 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno Eckhardt

AbstractMuch of our understanding of the transition to turbulence in flows without a linear instability came with the discovery and characterization of fully three-dimensional solutions to the Navier–Stokes equation. The first examples in plane Couette flow were periodic in both spanwise and streamwise directions, and could explain the transitions in small domains only. The presence of localized turbulent spots in larger domains, the spatiotemporal decoherence on larger scales and the ability to trigger turbulence with pointwise perturbations require solutions that are localized in both directions, like the one presented by Brand & Gibson (J. Fluid Mech., vol. 750, 2014, R3). They describe a steady solution of the Navier–Stokes equations and characterize in unprecedented detail, including an analytic computation of its localization properties. The study opens up new ways to describe localized turbulent patches.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


1998 ◽  
Vol 358 ◽  
pp. 357-378 ◽  
Author(s):  
M. NAGATA

The stability of nonlinear tertiary solutions in rotating plane Couette flow is examined numerically. It is found that the tertiary flows, which bifurcate from two-dimensional streamwise vortex flows, are stable within a certain range of the rotation rate when the Reynolds number is relatively small. The stability boundary is determined by perturbations which are subharmonic in the streamwise direction. As the Reynolds number is increased, the rotation range for the stable tertiary motions is destroyed gradually by oscillatory instabilities. We expect that the tertiary flow is overtaken by time-dependent motions for large Reynolds numbers. The results are compared with the recent experimental observation by Tillmark & Alfredsson (1996).


2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2018 ◽  
Vol 853 ◽  
pp. 205-234 ◽  
Author(s):  
Giulio Facchini ◽  
Benjamin Favier ◽  
Patrice Le Gal ◽  
Meng Wang ◽  
Michael Le Bars

We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonal to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the streamwise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number $Re$ and the Froude number $Fr$, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. $Fr\sim 1$) and above a moderate value of the Reynolds number $Re\gtrsim 700$. The instability results from a wave resonance mechanism already known in the context of channel flows – for instance, unstratified plane Couette flow in the shallow-water approximation. The result is confirmed by fully nonlinear direct numerical simulations and, to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water, linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of $Fr$ and $Re$ indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement.


Sign in / Sign up

Export Citation Format

Share Document