scholarly journals Doubly localized states in plane Couette flow

2014 ◽  
Vol 758 ◽  
pp. 1-4 ◽  
Author(s):  
Bruno Eckhardt

AbstractMuch of our understanding of the transition to turbulence in flows without a linear instability came with the discovery and characterization of fully three-dimensional solutions to the Navier–Stokes equation. The first examples in plane Couette flow were periodic in both spanwise and streamwise directions, and could explain the transitions in small domains only. The presence of localized turbulent spots in larger domains, the spatiotemporal decoherence on larger scales and the ability to trigger turbulence with pointwise perturbations require solutions that are localized in both directions, like the one presented by Brand & Gibson (J. Fluid Mech., vol. 750, 2014, R3). They describe a steady solution of the Navier–Stokes equations and characterize in unprecedented detail, including an analytic computation of its localization properties. The study opens up new ways to describe localized turbulent patches.

1976 ◽  
Vol 73 (1) ◽  
pp. 153-164 ◽  
Author(s):  
P.-A. Mackrodt

The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with superimposed rigid rotation against small three-dimensional disturbances is examined at finite and infinite axial Reynolds numbers. The neutral curve, which is obtained by numerical solution of the system of perturbation equations (derived from the Navier-Stokes equations), has been confirmed for finite axial Reynolds numbers by a few simple experiments. The results suggest that, at high axial Reynolds numbers, the amount of rotation required for destabilization could be small enough to have escaped notice in experiments on the transition to turbulence in (nominally) non-rotating pipe flow.


2014 ◽  
Vol 750 ◽  
Author(s):  
E. Brand ◽  
J. F. Gibson

AbstractWe present an equilibrium solution of plane Couette flow that is exponentially localized in both the spanwise and streamwise directions. The solution is similar in size and structure to previously computed turbulent spots and localized, chaotically wandering edge states of plane Couette flow. A linear analysis of dominant terms in the Navier–Stokes equations shows how the exponential decay rate and the wall-normal overhang profile of the streamwise tails are governed by the Reynolds number and the dominant spanwise wavenumber. Perturbations of the solution along its leading eigenfunctions cause rapid disruption of the interior roll-streak structure and formation of a turbulent spot, whose growth or decay depends on the Reynolds number and the choice of perturbation.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 847-851 ◽  
Author(s):  
Guo-Ping Gao ◽  
Carlo Cattani ◽  
Xiao-Jun Yang

In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 853-858
Author(s):  
Zhi-Jun Meng ◽  
Yao-Ming Zhou ◽  
Dong-Mu Mei

This paper addresses the systems of the incompressible Navier-Stokes equations on Cantor sets without the external force involving the fractal heat-conduction problem vial local fractional derivative. The spherical Cantor type co-ordinate method is used to transfer the incompressible Navier-Stokes equation from the Cantorian co-ordinate system into the spherical Cantor type co-ordinate system.


Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Takeshi Taniguchi

We prove the existence and uniqueness of solutions for a stochastic version of the three-dimensional Lagrangian averaged Navier–Stokes equation in a bounded domain. To this end, we previously prove some existence and uniqueness results for an abstract stochastic equation and justify that our model falls within this framework.


2010 ◽  
Vol 665 ◽  
pp. 99-119 ◽  
Author(s):  
D. F. GAYME ◽  
B. J. McKEON ◽  
A. PAPACHRISTODOULOU ◽  
B. BAMIEH ◽  
J. C. DOYLE

Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behaviour of fully turbulent plane Couette flow using a streamwise constant projection of the Navier–Stokes equations. This results in a two-dimensional three-velocity-component (2D/3C) model. We first use a steady-state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity profile. Simulations of the 2D/3C model under small-amplitude Gaussian forcing of the cross-stream components are compared to direct numerical simulation (DNS) data. The results indicate that a streamwise constant projection of the Navier–Stokes equations captures salient features of fully turbulent plane Couette flow at low Reynolds numbers. A systems-theoretic approach is used to demonstrate the presence of large input–output amplification through the forced 2D/3C model. It is this amplification coupled with the appropriate nonlinearity that enables the 2D/3C model to generate turbulent behaviour under the small-amplitude forcing employed in this study.


2011 ◽  
Vol 11 (4) ◽  
Author(s):  
Pedro Marín-Rubio ◽  
José Real ◽  
Antonio M. Márquez-Durán

AbstractWe prove that under suitable assumptions, from a sequence of solutions of Globally Modified Navier-Stokes equations with delays we can extract a subsequence which converges in an adequate sense to a weak solution of a three-dimensional Navier-Stokes equation with delays. An additional case with a family of different delays involved in the approximating problems is also discussed.


2014 ◽  
Vol 56 (1) ◽  
pp. 28-47 ◽  
Author(s):  
LAWRENCE K. FORBES

AbstractFluid turbulence is often modelled using equations derived from the Navier–Stokes equations, perhaps with some semi-heuristic closure model for the turbulent viscosity. This paper considers a possible alternative hypothesis. It is argued that regarding turbulence as a manifestation of non-Newtonian behaviour may be a viewpoint of at least comparable validity. For a general description of nonlinear viscosity in a Stokes fluid, it is shown that the flow patterns are indistinguishable from those predicted by the Navier–Stokes equation in one- or two-dimensional geometry, but that fully three-dimensional flows differ markedly. The stability of linearized plane Poiseuille flow to three-dimensional disturbances is then considered, in a Tollmien–Schlichting formulation. It is demonstrated that the flow may become unstable at significantly lower Reynolds numbers than those expected from Navier–Stokes theory. Although similar results are known in sections of the rheological literature, the present work attempts to advance the philosophical viewpoint that turbulence might always be regarded as a non-Newtonian effect, to a degree that is dependent only on the particular fluid in question. Such an approach could give a more satisfactory account of the underlying physics.


1997 ◽  
Vol 342 ◽  
pp. 159-177 ◽  
Author(s):  
A. CHERHABILI ◽  
U. EHRENSTEIN

A numerical bifurcation study in plane Couette flow is performed by computing successive finite-amplitude equilibrium states, solutions of the Navier–Stokes equations. Plane Couette flow being linearly stable for all Reynolds numbers, first two-dimensional equilibrium states are computed by extending nonlinear travelling waves in plane Poiseuille flow through the Poiseuille–Couette flow family to the plane Couette flow limit. The resulting nonlinear states are stationary with a spatially localized structure; they are subject to two-dimensional and three-dimensional secondary disturbances. Three-dimensional disturbances dominate the dynamics and three-dimensional stationary equilibrium states bifurcating at criticality on the two-dimensional equilibrium surface are computed. These nonlinear states, periodic in the spanwise direction and spatially localized in the streamwise direction, are computed for Reynolds numbers (based on half the velocity difference between the walls and channel half-width) close to 1000. While a possible relationship between the computed solutions and experimentally observed coherent structures in turbulent plane Couette flow has to be assessed, the present findings reinforce the idea that subcritical transition may be related to the existence of finite-amplitude states which are (unstable) fixed points in a dynamical systems formulation of the Navier–Stokes system.


Sign in / Sign up

Export Citation Format

Share Document