scholarly journals Large-eddy simulation and wall modelling of turbulent channel flow

2009 ◽  
Vol 631 ◽  
pp. 281-309 ◽  
Author(s):  
D. CHUNG ◽  
D. I. PULLIN

We report large-eddy simulation (LES) of turbulent channel flow. This LES neither resolves nor partially resolves the near-wall region. Instead, we develop a special near-wall subgrid-scale (SGS) model based on wall-parallel filtering and wall-normal averaging of the streamwise momentum equation, with an assumption of local inner scaling used to reduce the unsteady term. This gives an ordinary differential equation (ODE) for the wall shear stress at every wall location that is coupled with the LES. An extended form of the stretched-vortex SGS model, which incorporates the production of near-wall Reynolds shear stress due to the winding of streamwise momentum by near-wall attached SGS vortices, then provides a log relation for the streamwise velocity at the top boundary of the near-wall averaged domain. This allows calculation of an instantaneous slip velocity that is then used as a ‘virtual-wall’ boundary condition for the LES. A Kármán-like constant is calculated dynamically as part of the LES. With this closure we perform LES of turbulent channel flow for Reynolds numbers Reτ based on the friction velocity uτ and the channel half-width δ in the range 2 × 103 to 2 × 107. Results, including SGS-extended longitudinal spectra, compare favourably with the direct numerical simulation (DNS) data of Hoyas & Jiménez (2006) at Reτ = 2003 and maintain an O(1) grid dependence on Reτ.

2018 ◽  
Vol 15 (2) ◽  
pp. 75-89
Author(s):  
Muhammad Saiful Islam Mallik ◽  
Md. Ashraf Uddin

A large eddy simulation (LES) of a plane turbulent channel flow is performed at a Reynolds number Re? = 590 based on the channel half width, ? and wall shear velocity, u? by approximating the near wall region using differential equation wall model (DEWM). The simulation is performed in a computational domain of 2?? x 2? x ??. The computational domain is discretized by staggered grid system with 32 x 30 x 32 grid points. In this domain the governing equations of LES are discretized spatially by second order finite difference formulation, and for temporal discretization the third order low-storage Runge-Kutta method is used. Essential turbulence statistics of the computed flow field based on this LES approach are calculated and compared with the available Direct Numerical Simulation (DNS) and LES data where no wall model was used. Comparing the results throughout the calculation domain we have found that the LES results based on DEWM show closer agreement with the DNS data, especially at the near wall region. That is, the LES approach based on DEWM can capture the effects of near wall structures more accurately. Flow structures in the computed flow field in the 3D turbulent channel have also been discussed and compared with LES data using no wall model.


Author(s):  
Neng-Tsung Chang ◽  
Chih-Hung Hsu ◽  
Keh-Chin Chang

Particle-laden turbulent channel flow at Reτ = 644, loaded with binary mixture of particles, is numerically studied using the Lagrangian particle tracking method coupled with large eddy simulation. Turbulence statistics of different particle groups are analyzed. Two particle-wall models are applied to this study with / without considering wall roughness. Taking into considerations of rough wall model, the effect of wall roughness in the computations strengthens the wall-normal particle velocity fluctuations. As a result, particles tend to move from the near-wall region to the central core region. It leads to decrement of particle accumulation in the near-wall region as compared to the case considering the smooth wall model. The wall-normal particle mixing capability is enhanced which results in the redistribution of particles in the channel. The behavior of particle motion in the turbulent channel flow should be, thus, dependent on not only the value of Stokes number but also the wall roughness level.


2010 ◽  
Vol 24 (13) ◽  
pp. 1457-1460 ◽  
Author(s):  
JIAN FANG ◽  
LIPENG LU

The large eddy simulation (LES) of compressible turbulent channel flow controlled by active spanwise wall fluctuations (ASWF) is carried out in this paper. Heat transport and its relation with the momentum transport are paid with great attentions. In all the flow cases of present study, the changes of temperature fluctuation, heat transport and temperature streaks are in consistence with streamwise velocity fluctuation, momentum transport and velocity streaks respectively. This demonstrates the existence of same mechanism in heat transport and momentum transport in turbulent boundary layer, which gives the theoretical support for using the drag reduction technology to control wall heat flux.


2020 ◽  
Vol 12 (1) ◽  
pp. 39-53
Author(s):  
M. S. I. Mallik ◽  
M. A. Hoque ◽  
M. A. Uddin

This paper presents results of comparative study of large eddy simulation (LES) that is applied to a plane turbulent channel flow. The LES is performed by using a finite difference method of second order accuracy in space and a low-storage explicit Runge-Kutta method with third order accuracy in time. In the LES for subgrid-scale (SGS) modelling, Standard Smagorinsky Model (SSM) and Dynamic Smagorinsky Model (DSM) are used. Essential turbulence statistics from the two LES approaches are calculated and compared with those from direct numerical simulation (DNS) data. Comparing the results throughout the calculation domain, it has been found out that SSM performs better than DSM in the turbulent channel flow simulation. Flow structures in the computed flow field by the SSM and DSM are also discussed and compared through the contour plots and iso-surfaces.


Sign in / Sign up

Export Citation Format

Share Document