The structure of isotropic turbulence at very high Reynolds numbers

1959 ◽  
Vol 5 (04) ◽  
pp. 497 ◽  
Author(s):  
Robert H. Kraichnan
2016 ◽  
Vol 799 ◽  
pp. 159-199 ◽  
Author(s):  
A. Briard ◽  
T. Gomez ◽  
C. Cambon

The present work aims at developing a spectral model for a passive scalar field and its associated scalar flux in homogeneous anisotropic turbulence. This is achieved using the paradigm of eddy-damped quasi-normal Markovian (EDQNM) closure extended to anisotropic flows. In order to assess the validity of this approach, the model is compared to several detailed direct numerical simulations (DNS) and experiments of shear-driven flows and isotropic turbulence with a mean scalar gradient at moderate Reynolds numbers. This anisotropic modelling is then used to investigate the passive scalar dynamics at very high Reynolds numbers. In the framework of homogeneous isotropic turbulence submitted to a mean scalar gradient, decay and growth exponents for the cospectrum and scalar energies are obtained analytically and assessed numerically thanks to EDQNM closure. With the additional presence of a mean shear, the scaling of the scalar flux and passive scalar spectra in the inertial range are investigated and confirm recent theoretical predictions. Finally, it is found that, in shear-driven flows, the small scales of the scalar second-order moments progressively return to isotropy when the Reynolds number increases.


2015 ◽  
Vol 779 ◽  
pp. 371-389 ◽  
Author(s):  
M. Vallikivi ◽  
M. Hultmark ◽  
A. J. Smits

Measurements are presented in zero-pressure-gradient, flat-plate, turbulent boundary layers for Reynolds numbers ranging from $\mathit{Re}_{{\it\tau}}=2600$ to $\mathit{Re}_{{\it\tau}}=72\,500$ ($\mathit{Re}_{{\it\theta}}=8400{-}235\,000$). The wind tunnel facility uses pressurized air as the working fluid, and in combination with MEMS-based sensors to resolve the small scales of motion allows for a unique investigation of boundary layer flow at very high Reynolds numbers. The data include mean velocities, streamwise turbulence variances, and moments up to 10th order. The results are compared to previously reported high Reynolds number pipe flow data. For $\mathit{Re}_{{\it\tau}}\geqslant 20\,000$, both flows display a logarithmic region in the profiles of the mean velocity and all even moments, suggesting the emergence of a universal behaviour in the statistics at these high Reynolds numbers.


Author(s):  
A. A. Townsend ◽  
Geoffrey Taylor

Some new measurements of isotropic turbulence produced behind a biplane grid have been made at high Reynolds numbers, and these results are compared with the predictions of the theory of local isotropy developed by A. N. Kolmogoroff. The transverse double-velocity correlation has been measured at mesh Reynolds numbers up to 3·2 × 105, and the observed form agrees well with the predicted form. Measurements of the skewness factor of velocity differences over finite intervals have also been made, and the factor is nearly constant and equal to −0·38, if the interval is small compared with the integral scale. The invariance of dimensionless functions of the velocity derivatives has been confirmed for the flattening factor of ∂u/∂x, namely,which is nearly constant over a wide range of conditions. It is concluded that the theory of local isotropy is substantially correct for isotropic turbulence of high Reynolds number.


1982 ◽  
Vol 33 (2) ◽  
pp. 105-123 ◽  
Author(s):  
P.K. Stansby ◽  
A.G. Dixon

SummaryUncertainties in the use of the discrete-vortex method in modelling the time development of the wake of a circular cylinder at very high Reynolds numbers are investigated. It is shown that simply introducing vorticity at generally accepted separation positions at a rate of ½Us2, Us being the velocity at separation, gives wholly unrealistic wake predictions. In the base region pressure fields occur which would promote separation in steady flow and so a first approximation for ‘secondary’ separation is incorporated into the model. This brings pressure distributions and vorticity structures at subcritical and supercritical Reynolds numbers into good agreement with experiment. The convection of the vortices is calculated using the cloud-in-cell technique and comparisons are made with direct summation methods.


Sign in / Sign up

Export Citation Format

Share Document